Trawl Positioning System User Manual

Contents

Legal	. 5
History	5
Copyright	
Disclaimer	7
Diocialitici	/

Introduction and Presentation	8
Introduction	
Applications	
Safety Guidelines	
About Trawl Positioning	
About Spread Sensors	
About Slant Range Sensors	19
Description	20
Firmware	
Technical Specifications	
Main Parts	23
Operational Mode Indicator	- 25
Installation Steps	
÷	

Sensor Configuration	
Connecting the Sensor to Mosa2	
Using a Wireless Connection	
Using the Configuration Cable	
Using the Dock and a Configuration Cable	
Spread Sensor Specific Settings	
Defining the Trawl Geometry	
Defining the Starboard and Clump Sensor Type	
Configuring Spread Sensor Telegrams	
Spread	
Depth	
Temperature	
Pitch & Roll	
Configuring Spread Sensor Positioning Settings	
Configuring the Spread Sounding Channel	35
Calibrating the Pitch and Roll	
Slant Range Specific Settings	
Configuring Sounding Frequencies	
Configuring Slant Range Positioning Settings	
Configuring the Uplink Power	41
Testing Measures	
Exporting Sensor Configuration Settings for Record Keeping	
Exporting Sensor Configuration Settings for the Receiver	43

System Configuration and Display	45
Configuring the Hydrophones	
Adding Sensors to the Receiver	
Adding the Sensor with a Configuration File	
Adding the Sensor Manually	49
Adding Sensors to the Receiver	49
Configuring Sensor Settings	50
Configuring the Positioning Settings	
Calculations for Positioning System	
Adding Data from External Devices	
Configuring Trawl Settings	
Configuring Data Display on Scala/Scala2	
Spread Sensor: Displaying Door 3D View	
Spread Sensor: Displaying Single Trawl Spread	65
Spread Sensor: Displaying Twin Trawl Spread	
Displaying the Chart View	
Displaying the Vessel 3D Overview	
Doors Positioning Data	
Bearing Angles	
Displaying Trawl Positioning from Scala/Scala2 on Olex	
Displaying Trawl Positioning from Scala/Scala2 on MaxSea Version 12	
Displaying Trawl Positioning from Scala/Scala2 on MaxSea TimeZero	
Displaying Trawl Positioning from Scala/Scala2 on SeapiX	
Displaying Bathymetric Data from GEBCO Database	
Scala Displaying Olex Bathymetric Data on Scala	
Receiving Warp Lengths from Scantrol	
Installation	
Installation Principles	
Installing Sensor Pockets	
Installing Spread Sensors	
Single Trawl	
Twin Trawls	
Installing Slant Range Sensors	
Maintenance and Troubleshooting	
Interference Check	
Scala Spectrum Analyzer Display	
Scala Checking Noise Interference	
Scala2 Checking Noise Interference	
Charging the Sensor	
Cleaning the Sensor Maintenance Checklist	
Troubleshooting Mosa2 does not open due to error message	
mosaz does not open due to error message	123

124 125 126 126 126
125 126 126 126
126 126 126
126 126 126
126
127
127
128
128
128
129
129
130
132
-

Appendix	133
Frequency Plan	133
Appendix B: Compatible NMEA Sentences from Winch Control Systems, GPS and	
Compass Devices	138
Appendix C: Pocket Drawings	146
Pocket Angle of Attack	147
Pocket for XL Bottles (Standard Spread Sensor & Standard Slant Range)	148
Pocket for Stubby Bottles	155
Pocket for Stubby Bottles with Slim Housing and Mini Slant Range	159
Appendix D: Example of Installation on Poly Jupiter Doors	160
Appendix E: General Installation Instructions and Drawings	162
Appendix F: Testing Relative Bearing Measurements	
Testing Bearing at the Office	163
Testing Bearing at the Harbor	165
Index	166

Legal

History

V1	03/09/18	First release
V2	04/12/18	 Documentation now also includes Scala/Scala2 version 01.06.19. Displaying Trawl Positioning from Scala/Scala2 on SeapiX on page 93: added new compatible sentence (\$PTSAL for SeapiX).
V3	07/06/18	 New troubleshooting topic: Sensor cannot connect in wireless connection on page 123 Interference Check on page 114: more detailed information about Spectrum page. Appendix B: Compatible NMEA Sentences from Winch Control Systems, GPS and Compass Devices on page 138: structure of compatible NMEA sentences is now explained.
V4	11/30/18	• Frequency Plan on page 133: drawings have been changed, frequencies are now allocated between 34 kHz and 36 kHz and frequency ranges of narrowband and wideband hydrophones are indicated.
V5	07/16/20	 Now documents Mosa2 version 02.03, Scala version 01.06.34 and Scala2 version 02.02. New topics: Receiving Warp Lengths from Scantrol on page 103 Appendix F: Testing Relative Bearing Measurements on page 163
V6	03/08/21	 Now documents Mosa2 version 02.05. Connecting the Sensor to Mosa2 on page 27: added guidance on how to connect sensor to Mosa2 using the Configuration Cable product. Added troubleshooting topic: Sensor does not connect correctly with Mosa2 when using the Configuration Cable on page 124 Added details on the Down 1 + Down 2 sounding mode in Configuring Sounding Frequencies on page 38. Added contact details for the sales offices in South Africa and Norway in Support Contact on page 132.

V7	07/05/21	 Now documents Scala2 version 02.04 and Mosa2 version 02.07. Added note: Slant Range sensors are not compatible with receiver firmware versions from 08.01.01. The feature of distance measurement between the doors and the vessel is now performed by our later product the Duplex sensors. Replaced term Configuration Plug by Configuration Cable. Connecting the Sensor to Mosa2 on page 27: Updated distance between other electrical devices and the computer: 1 m instead of 50 cm. Configuring the Positioning Settings on page 52 and Calculations for Positioning System on page 54: included guidelines to complete the positioning setting page with the receiver firmware 08.01.01. Added explanations for options in the Trawl Modeling panel, in the chapters on how to display trawl positioning from Scala2 to other systems.
V8	08/04/22	 Now documents Scala2 version 02.10.x and Mosa2 version 02.11.x. Added guidance about connecting the sensor to Mosa2 using the Configuration Cable and Dock in Connecting the Sensor to Mosa2 on page 27. Added guidance about charging the sensor with the Dock in Charging the Sensor on page 119. Replaced DealerWeb website by Marport Authorized Service Provider (MASP). Added contact details of the sales office in United Kingdom, and updated contact details of Iceland sales office.

Copyright

© 2022 Marport. All Rights reserved.

No part of this document may be reproduced, stored in a retrieval system or transmitted in any form by any means; electronic, mechanical, photocopying or otherwise, without the express written permission from Marport. "Marport", the Marport logo and Software Defined Sonar are registered trademarks of Marport. All other brands, products and company names mentioned are the trademark and property of its respective owners only. Marport is a division of Airmar Technology Corporation.

Disclaimer

Marport endeavors to ensure that all information in this document is correct and fairly stated, but does not accept liability for any errors or omissions.

The present user guide is applicable for the following versions:

- Scala: 01.06.06-01.06.34 / Scala2: 02.10.x
- Mosa2: 02.11.x

Patents apply to products. U.S. Patents 9,772,416; 9,772,417

Introduction and Presentation

Read this section to get a basic knowledge of your door sensor.

Tip: Click Marport logo at the bottom of pages to come back to the table of contents.

Introduction

Marport Trawl Positioning System indicates the position of the trawl gear. Trawl doors are displayed on the screen to help you maneuver the gear with more ease and security.

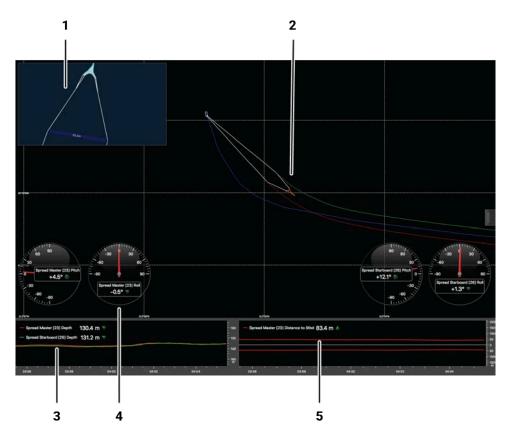
The position of the trawl gear can be calculated with two different types of sensors:

- With Spread sensors, it is calculated using depth and bearing data received from the sensors and using the length of warps. Warp lengths can be obtained from winch control systems giving accurate wire measurements.
- With Slant Range sensors (also called pingers), it is calculated using the distance from the sensors to the hydrophones, depth and bearing data received from the sensors.

Each option has its advantages: Spread sensors offer a more rapid update, a longer battery life, a longer range and can be used alone. This is the preferred option. Slant Range sensors are usually used in addition to Spread sensors, so you need two pockets on the doors. They are more suited to fishing vessels that do not have winch control systems.

Spread and Slant Range sensors also exist in smaller size to meet the needs of smaller trawlers: a Mini Spread Sensor (stubby bottle) with a standard or slim housing and a mini Slant Range (small bottle).

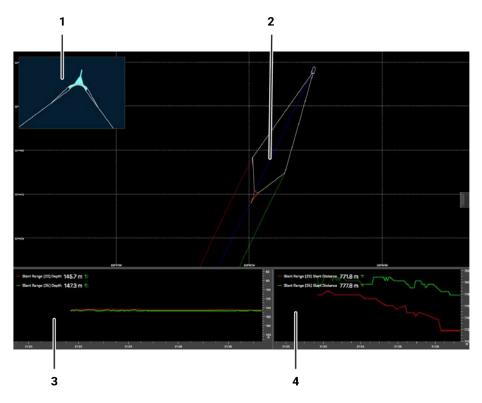
You can use Marport Trawl Positioning System to display the trawl position on Olex, MaxSea version 12.



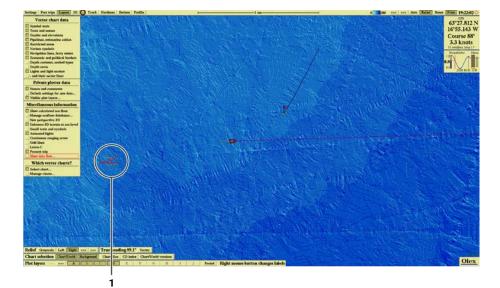
These labels tag topics or actions that are specific to Scala and/or Scala2. Depending on the version you have, you may follow either one of these labels.

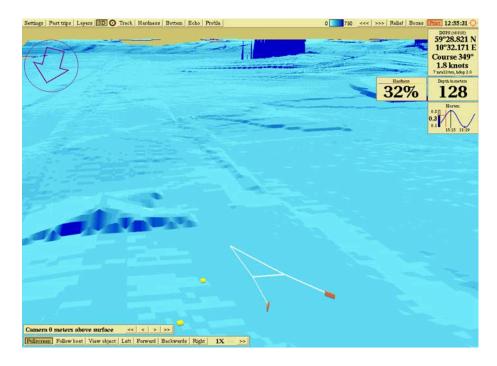
Applications

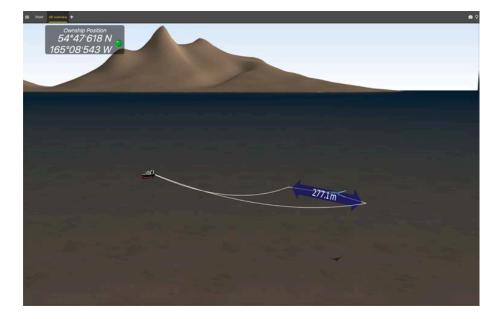
Here are some examples of data received from Spread and Slant Range sensors displayed in Scala/Scala2.



- **1.** 3D overview of vessel and trawl
- 2. Chart view with vessel and door trails
- **3.** Depth of the doors


- **4.** Pitch and roll of the doors
- 5. Distance between doors




3D overview of vessel and trawl
 Depth of the doors
 Chart view with vessel and door trails
 Distance from the Slant Range to the hydrophones

Positioning data exported on Olex

Vessel 3D overview with GEBCO bathymetry

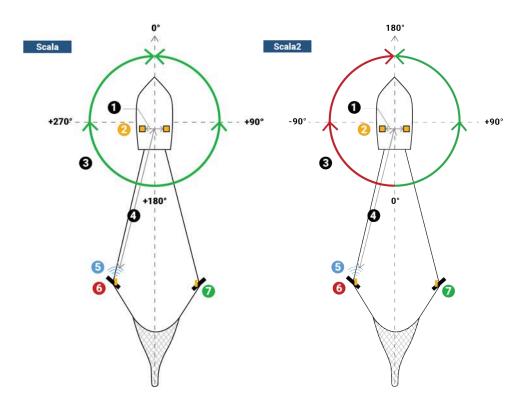
Safety Guidelines

Important: To ensure proper and safe use of this equipment, carefully read and follow the instructions in this manual.

Basic good practices

When using the product, be careful: strong impacts can cause damage to the electronic components inside.

Never place the product in a hazardous and/or flammable atmosphere.


Product installation and use

Install and use this product in accordance with this user manual. Incorrect use of the product may cause damage to the components or void the warranty.

Only qualified Marport dealers can do maintenance and repairs on internal components of the sensors.

Precautions

Warning: In case of water ingress in the product, do not charge it: battery may vent or rupture, causing product or physical damage.

About Trawl Positioning

Positioning signal is sent after the depth signal (**5**). With this signal, the receiver can calculate the bearing angle (**3**) of the sensors placed on port (**6**) and starboard (**7**) doors.

Scala Angles are relative to the heading. Angles toward port side are above 180° and angles toward starboard side are below 180°. Scala also displays true (T) bearing angles (based on true North).

Scala2 Angles are relative to the stern of the vessel. Angles toward port side are negative and angles toward starboard side are positive.

For a Slant Range sensor (also called pinger), distance from the hydrophones to the doors (**4**) is calculated from the response time of the sensor to the hydrophone (**2**).

For a Spread sensor, the distance is calculated from the warp lengths. Scala application can calculate the positioning of the trawl from this distance, the depth, the bearing angles, door spread and GPS coordinates.

Note: Warp lengths can be received from a winch control system, or entered manually in the control panels, under **Manual Estimation**. If no warp lengths, the positioning will be calculated from the bearing, spread distance and depth data sent by the Spread sensors. However, we strongly recommend to receive warp lengths from a winch control system. Without it, the accuracy of the positioning will be reduced.

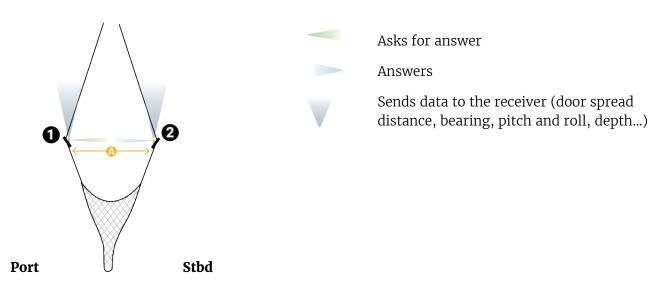
The distance between the two hydrophones is called the baseline (1).

For a basic system you need:

2 Slant Range sensors	2 to 3 Spread Sensors					
1 M3/M4/M5/M6 receiver						
2 receiving hydrophones:						
 2 passive hydrophones + wideband preamplifier (ref NC-2-02) OR 2 active wideband hydrophones (ref. NC-1-08) 						
1 transmitting hydrophone: passive hydrophone (ref. NC-1-05)	Warp lengths					
Baseline calculation, Z angular offset Baseline calculation						
Scala/Scala2 with GPS and heading input						

Important: The two receiving hydrophones must have a minimum distance of **1 meter** between each other.

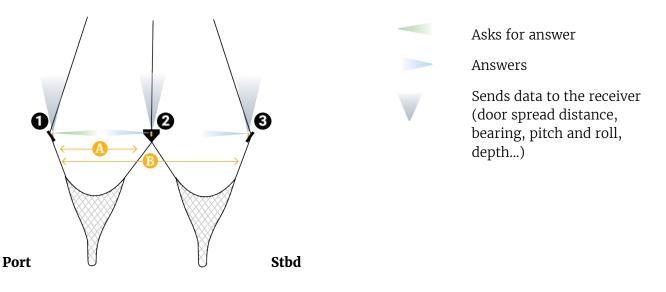
Important: You need to remove the 50kHz notch filter on the wideband preamplifiers.


Important: On **M4 and M6 systems**, the receiving hydrophones must be both connected to a hydrophone input between H1, H2 and H3 or both between H4, H5 and H6. The transmitting hydrophone for a Slant Range must be connected to a different set of hydrophone inputs than the receiving hydrophones (for example, if the receiving hydrophones are connected to H1 and H2, the transmitting hydrophone must be connected to a hydrophone input between H4, H5 and H6).

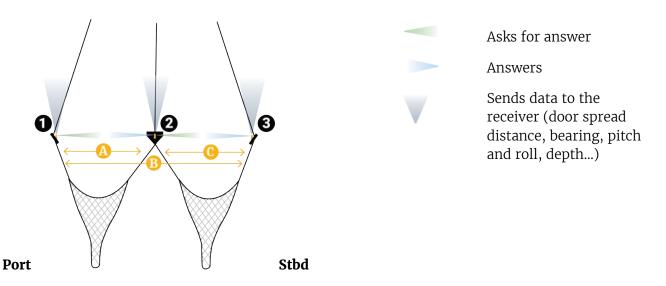
About Spread Sensors

You can use Spread sensors in three different modes: single trawl, twin trawls with double distance and twin trawls with triple distance. The following schemas illustrate the three modes and how Spread sensors communicate with each others.

Single Trawl

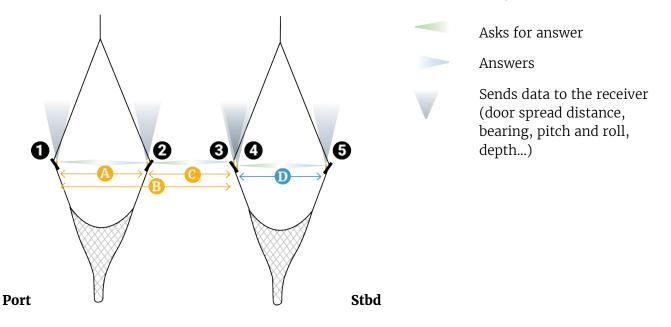

User case 1: Single trawl with single distance

- The port sensor (1) interrogates the starboard sensor (2) to know the distance between them (A). Then, it sends the distance to the receiver.
- The sensors send data such as bearing, temperature, depth, pitch and roll to the receiver.


Twin Trawls

User case 2: Twin trawls with double distance

- The port sensor (1) interrogates the clump (2) and starboard sensors (3) to know the distance with each one. Then, it sends the two distances (**A**, **B**) to the receiver.
- All sensors send data such as bearing, temperature, depth, pitch and roll to the receiver.



- The port sensor (1) interrogates the clump (2) and starboard sensors (3) to know the distance with each one. Then, it sends the two distances (A, B) to the receiver.
- The clump sensor (2) interrogates the starboard sensor (3) to know the distance between them. Then, it sends the distance (C) to the receiver.
- All sensors send data such as bearing, temperature, depth, pitch and roll to the receiver.

Dual Trawls

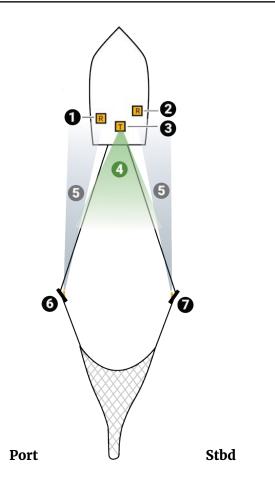
User case 4: Dual trawls with two sets of spread sensors

If you use two separate trawls, you need to install two sets of spread sensors. You can install them in two different ways: in the same way as for a single trawl on each trawl, or if you want to have the spread distance between the two inner doors, you can set up the following installation:

Sensors with triple distance are installed on the port trawl and sensors with single distance are installed on the starboard trawl.

- The port sensor (master) (1) interrogates the starboard sensor (clump) on the port trawl (2) and the starboard sensor (slave) on the starboard trawl (3) to know the distance with each one. Then, it sends the distances (A and B) to the receiver.
- The starboard sensor (clump) on the port trawl (2) interrogates the port sensor (slave) on the starboard trawl (3) to know the distance between them. Then, the distance (C) to the receiver.
- The port sensor (master) on the starboard trawl (4) interrogates the starboard sensor (slave) on the starboard trawl (5) to know the distance between them. Then, it sends the distance (D) to the receiver.
- All sensors send data such as bearing, temperature, depth, pitch and roll to the receiver.

Note: Make sure to put different ranging frequencies between the two sets of Spread sensors.


Summary of parameters

The table of geometry parameter defines the possible user cases for the Spread Sensors:

	M	ASTER		CLUMP		STARBOARD	D	ISTAN	CE	
User case	Firmware	Trawl Geometry Firmware Slave Type Firmware Slave Type		ry Firmware Slave Type Firmware Slave Type	Firmware Slave Type Firmware Slave Type		Slave Type	D1	D2	D3
1	FIRM174	Single Trawl	-	-	FIRM173	Starboard for single/double distances doorspread	x			
2	FIRM174	Twin Trawl	FIRM173	Clump for double distances doorspread	FIRM173	Starboard for single/double distances doorspread	x	x		
3	FIRM174	Twin Trawl	FIRM173	Clump for triple distances doorspread	FIRM173	Starboard for triple distances doorspread	x	x	x	

		MASTER (port trawl)		CLUMP		STARBOARD (port trawl)				ARBOARD bd trawl)
User case	Firmware	Trawl Geometry	Firmware	Slave Type	Firmware	Slave Type	Firmware	Trawl Geometry	Firmware	Slave Type
4	FIRM174	Twin Trawl	FIRM173	Clump for triple distances doorspread	FIRM173	Starboard for triple distances doorspread	FIRM174	Single Trawl	FIRM173	Starboard for single/double distances doorspread

About Slant Range Sensors

- 1. Port receiving hydrophone
- 2. Starboard receiving hydrophone
- 3. Transmitting hydrophone
- **4**. Transmitting hydrophone asks
- 5. Slant Range sensors answer
- 6. Slant Range sensor 1
- 7. Slant Range sensor 2

Slant Range sensors are also called **pingers**.

You can install one sensor on each trawl door.

- **1.** One transmitting hydrophone sends a signal toward the Slant Range sensors.
- 2. Both Slant Range answer with depth and bearing data.
- **3.** Two receiving hydrophones receive the responses from the 2 sensors.

The distance between the sensors and the hydrophones is calculated using the response time of the sensors to the hydrophone.

Description

Firmware

Spread Sensors

All options are activated by default.

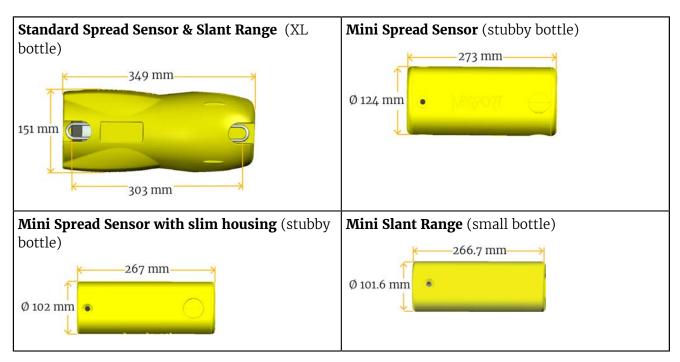
Position on Door	Firmware Name						
Master (port)	Spread Master with pitch, roll, depth, position and temp (Triple distance Dual direction)	FIRM174					
Starboard	Spread Slave with pitch, roll, depth, position and temp (Dual direction)	FIRM173					
Clump (optional)	Spread Slave with pitch, roll, depth, position and temp (Dual direction)	FIRM173					

Slant Range

Pinger_NB with Depth (FIRM125, from version 07.06) on both doors.

Technical Specifications

Spread sensor


Uplink frequency	30 to 60 kHz
Range to vessel	up to 2500 m*
Data update rate (telegrams)	Spread: 3-15 sec Depth + bearing : 3-8 sec Temp: 3-16 sec Pitch & roll: 3-15 sec.
Depth range	up to 1800 m
Depth resolution	0.1 m with 0.1% accuracy
Pitch angle	±90°
Roll angle	±90°
Pitch & roll accuracy	±0.1°
Temp measurement range	-5° C to +25° C
Temp accuracy	±0.1° C
Typical battery life	Up to approx. 11 days (approx. 5.5 days for Mini Spread Sensor) †
	Standard: 8-12 hours ‡
Charging time	Fast Charge: 4 hours
Battery type	Lithium-Ion
Weight in air (with housing)	7.3 kg

Weight in water (with housing)	2.4 kg
Spread Mini weight in air	4 kg, slim 3.3 kg
Spread Mini weight in water	1 kg, slim 0.9 kg
Warranty	2 years (Sensor & Battery) **

Slant Range sensor

Uplink frequency	30 to 60 kHz	
Range to vessel	up to 700 m*	
Data update rate	Every 4 sec.	
Depth range	up to 1500 m	
Depth resolution	0.1 m with 0.1% accuracy	
Typical battery life	 XL bottle: up to approx. 76 hours Small bottle: up to approx. 38 hours † 	
Charging time	Standard: 8-12 hours ‡	
Charging time	Fast Charge: 4 hours	
Battery type	Lithium-Ion	
Weight in air	3 kg	
Weight in water	2.7 kg	
Warranty	2 years (Sensor & Battery)**	

*Reference only. Depends on functions enabled. / † Depends on sensor uplink power and options. / † Based on average charging time. / **Marport Standard Marine Limited Warranty

Dimensions

Main Parts

1

External View

Tip: Door sensors have colored markers on the housing to indicate their location on trawl doors:

Starboard sensor (green)

Port sensor (red)

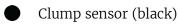


Figure 1: Standard Spread Sensor (XL bottle)

Figure 4: Standard Slant Range (XL bottle)

Figure 2: Mini Spread Sensor (stubby bottle)

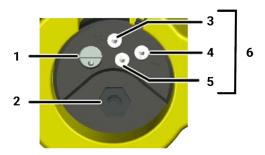
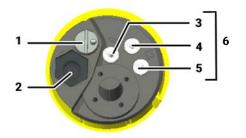


Figure 3: Mini Spread Sensor with slim housing (stubby bottle)

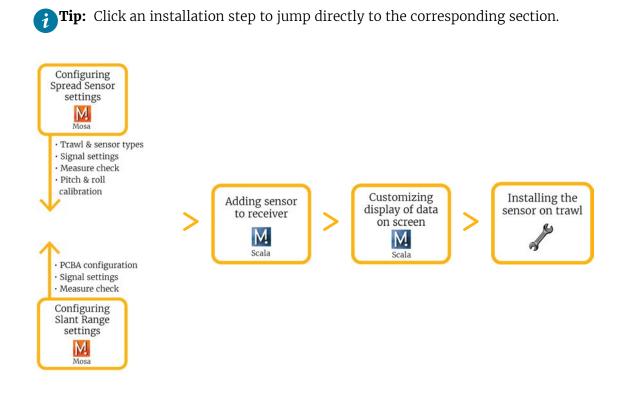

Figure 5: Mini Slant Range (small bottle)

End cap of standard Spread Sensor, standard Slant Range (XL bottle) and mini Spread Sensor
(stubby bottle)

- **1.** Pressure sensor
- 2. Temperature sensor
- 3. Positive charge
- 4. Negative charge
- 5. Water switch
- 6. Shoulder bolts

End cap of mini Slant Range (small bottle)

- **1.** Pressure sensor
- 2. Temperature sensor
- 3. Negative charge
- **4.** Water switch
- 5. Positive charge
- 6. Shoulder bolts


- Do not put foreign objects into pressure sensor opening or try to open it.
- Do not remove the shoulder bolts from the outside of the sensor.

It may damage the components.

Operational Mode Indicator

Indicators from the transducer

State	Situation	Operation	LED
Charging	Charger plug is connected.	Batteries are charging.	No light.
Running	Sensor is in water or activated with jumper.	After an initialization phase, echo sounder is operating.	
			Flashing red
Configuring	Sensor is out of water.	Configuration via wireless communication. Turns off after 10 minutes without user action.	
			Flashing green

Installation Steps

Note: You can customize the display of data on Scala/Scala2 at any time.

Sensor Configuration

Learn how to configure the sensor settings.

Note: This guide refers to the following versions of **Mosa2:** 02.11.x. If you use another version, the visual interface and options may vary.

Connecting the Sensor to Mosa2

To configure the sensor, you need to connect it to Mosa2 using a wireless communication or using the Configuration Cable.

Using a Wireless Connection

About this task

Important: Mosa 2.11 running on macOS Monterey: A1 sensors cannot connect by short range wireless signal. You must use a Configuration Cable.

Procedure

1. Open Mosa2.

2. Connect the water-switch.

The light on the transducer flashes red.

3. Disconnect the water-switch.

After a few seconds, the light flashes green.

4. Wait a few seconds for the sensor to be recognized. When it appears in the discovery page, click

Spread Master w/ Depth, Temp, Positi Version: 174.08.03	->>
0000053D0BFD	

Results

The sensor configuration pages are displayed.

Using the Configuration Cable

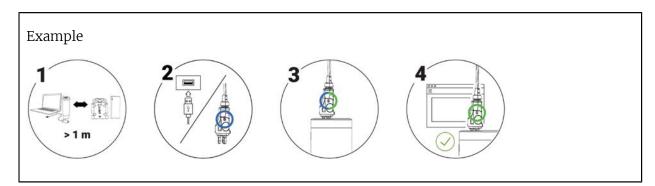
Simply connect the Configuration Cable from the computer to the sensor to display the sensor configuration page on Mosa2.

About this task

Note: Compatible with Mosa2 02.05.x and above.

i **Tip:** Refer to the Configuration Cable Quick Reference Guide for more details about the use of this product.

Procedure


- **1.** Move other electrical devices minimum 1 m away from the computer.
- **2.** Connect the USB connector directly to the computer.

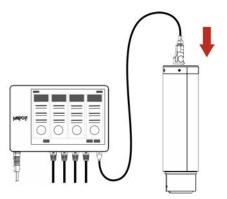
Mosa2 opens automatically and the startup wizard is displayed. The LED on the plug is solid blue.

3. Connect the three-pin plug to the sensor.

The LED on the plug blinks alternatively blue and green.

4. Wait a few seconds. The configuration page of the sensor is displayed on Mosa2. The LED on the plug is solid green.

Note: You can keep the Configuration Cable continuously connected by USB, and virtually eject or connect it. When no sensor is connected to the Configuration Cable, click **Menu** ≡ > **Eject Config Plug** or **Connect Config Plug**. When ejected, you come back to the discovery page. It stays disconnected until you virtually connect to it or manually disconnect then connect it.


Using the Dock and a Configuration Cable

About this task

Note: Compatible with Mosa2 02.11.x and above.

Procedure

1. Connect the USB connector of the Configuration Cable to the Dock and the plug to the sensor's endcap.

2. Open Mosa2. The Configuration Cable is displayed on the discovery page.

••	Mosa	V2	
3			WARSOS
Dock	<u></u>	A2HSE2034003	
Mx receiver		Config Cable on Dock	
192.168.1.195		192.168.1.35	
	Searching for ne) w devices	
			MOSA 2.11.0.

Click **to** open the sensor configuration page.

3. To leave Mosa2 configuration page and come back to the discovery page, click \equiv > **Disconnect**.

Spread Sensor Specific Settings

You need to set these settings for Spread sensors.

Defining the Trawl Geometry

You need to define for the Master Spread Sensor the type of trawl that you are using.

Procedure

- 1. Connect the Master sensor to Mosa2.
- 2. Click the tab **Spread**.
- **3.** From **Trawl Geometry**, select your type of trawl, depending if you are fishing with twin trawls or a single trawl.

4. Click **Apply** and make sure there is a green check mark \checkmark .

Defining the Starboard and Clump Sensor Type

You need to define the type of Starboard and Clump (if applicable) sensors that are installed.

About this task

If you have a Starboard and a Clump sensor, you need to do this task for both of them.

Procedure

- 1. Connect the Starboard or Clump sensor to Mosa2.
- 2. Click the tab **Spread**.
- **3.** From **Slave Sensor Type**, choose according to your type of installation:

Information	Spread	Depth	Temperature	Pitch and Roll	Channel	Chirp	General	Configu	uration
Slave Se	nsor Type								
Туре	Type Starboard for single/double distances doorspread ("Starboard Slave")								
Type	Clump for double distances doorspread ("Clump Slave")								
	Starboard for single/double distances doorspread ("Starboard Slave")								
Re	Re Clump for triple distances doorspread ("Clump Master_Slave")								
	Starboard for triple distances doorspread ("Starboard Clump_Slave")								

• Single Trawl:

Sensor	Slave Sensor Type	
Starboard	Starboard for single/double distances doorspread	

• Twin trawls with double distance:

Sensor	Slave Sensor Type	
Starboard	Starboard for single/double distances doorspread	
Clump	Clump for double distances doorspread	

• Twin trawls with triple distance:

Sensor	Slave Sensor Type	
Starboard	Starboard for triple distances doorspread	
Clump	Clump for triple distances doorspread	

4. Click **Apply** and make sure there is a green check mark \checkmark .

Configuring Spread Sensor Telegrams

You need to configure telegrams sent by the Master, Starboard and Clump (if applicable) sensors.

Before you begin

The sensor is connected to Mosa2.

About this task

You need to configure telegrams for each door sensor that you have.

Telegrams are used to define the acoustic communication between the sensor and the receiver. Data (e.g. temperature, depth) are recognized by the receiver according to the type of telegram defined (e.g. TL, CL). The telegram defines intervals between pulses emitted by the sensor, and one interval represents one value. For example, if the interval between 2 pulses of an AL spread telegram is 15 s, the spread is 250 meters.

Important: Make sure there is a minimum distance of 100 Hz between PRP telegrams and of 400 Hz with the uplink frequency of NBTE sensors. See Frequency Plan on page 133 for a full list of boat/channel codes.

Remember: Always click **Apply** after you change a setting and make sure there is a green check mark \checkmark .

Note: To use Spread sensors with a Scanmar system, use AL and AL6 spread telegrams. Temperature, depth, pitch and roll telegrams are all compatible.

Spread

You need to configure spread telegrams sent by the Master sensor to the vessel and, if applicable, by the Clump sensor. You do not need to configure spread telegrams for a Starboard sensor.

About this task

Choose spread telegrams according to the distance between trawl doors, or between the Clump and doors:

- AL: less than 250 m. Sends data every 11 to 15 sec. (compatible with Scanmar system)
- AN: less than 250 m. Sends data every 3 to 8 sec.
- AL6: less than 610 m. Sends data every 11 to 14 sec. (compatible with Scanmar system)

• A6: less than 610 m. Sends data every 3 to 8 sec. (starboard telegram only)

Procedure

- **1.** If you have a single trawl, you need to configure the telegram giving the spread distance from Master to Starboard:
 - a) Connect the Master sensor to Mosa2.
 - b) Click the tab **Spread**.

Information Spread Depth Temperature Pitch and Roll Channel Chirp General Configuration

c) From Starboard Telegram (Master to Starboard distance), choose AL, AN, A6 or AL6.

Note: If using the sensors with Scanmar system, choose between AL and AL6.

- a) From **Starboard Boat Code/Channel Code** choose a frequency for the telegram.
- **2.** If you have twin trawls:
 - a) Connect the Master or Clump sensor to Mosa2.
 - **b)** Click the tab **Spread**.

Information Spread Depth Temperature Pitch and Roll Channel Chirp General Configuration

c) The table below shows which telegram you need to configure, depending on the measured spread distances. You also need to set a frequency for each one.

Measured Distance	Sensor	Telegrams
Dual distance	Master	 Clump telegram (Master to Clump distance) Starboard telegram (Master to Starboard distance)
	Clump	n/a
Triple distance	Master	 Clump telegram (Master to Clump distance) Starboard telegram (Master to Starboard distance)
	Clump	Starboard telegram (Clump to Starboard distance)

- **3.** If needed, you can change the frequency used for the sensors to communicate with each other.
 - a) From Mosa2, click **Menu** = > **Expert** and enter the password copernic.
 - **b)** From **Spread** > **Ping Frequency**, enter the same frequency for all door sensors (default is 144 kHz, range is 120 to 220 kHz).

Important: If using dual trawls with two sets of Spread sensors (see About Spread Sensors on page 15), you must apply different frequencies between the two sets (e.g. 110 kHz for port trawl sensors and 144 kHz for starboard trawl sensors).

Note: V2 firmware: When operating, a difference of frequency is automatically applied.

- Master emitting frequency (Tx): configured ping frequency
- Clump Tx: configured ping frequency 10 kHz
- Starboard Tx: configured frequency + 10 kHz

For example, if spread frequency is set at 144 kHz for all door sensors, it means that Master emits at 144. Clump listens 144 then emits at 134. Starboard listens at 144 then emit at 154.

Note: A Marport spread sensor working with a SS4 Scanmar spread sensor need to have a ping frequency of 144,5 kHz and a V1 firmware version. Read Configuring the Spread Sounding Channel on page 35 to know how to configure the spread sounding channel of the sensors working with V1 firmware.

Depth

Procedure

1. Click the tab **Depth**.

Information Spread Depth Temperature Pitch and Roll Channel Chirp General Configuration

- 2. From Depth Boat Code/Channel Code, choose a frequency.
- **3.** From **Depth Telegram**, choose among the telegrams according to the depth at which you are fishing. They all send data every 3 to 8 sec, but at different depth ranges.

Note: The lower the depth range is, the more precise the measures are.

- D3 = 300 m
- D6 = 600 m
- D12 = 1200 m
- D18 = 1800 m

4. You can deactivate depth data to save battery life:

- a) From Mosa2, click **Menu** = > **Expert** and enter the password copernic.
- b) From **Depth Activation**, select **No**.

Temperature

Procedure

1. Click the tab **Temperature**.

- 2. From **Temperature Boat Code/Channel Code**, choose a frequency.
- 3. From Temperature Telegram, choose between:
 - TL: sends data between every 11 to 16 sec.
 - TN: sends data between every 3 to 11 sec.

Note: TN sends data more often, but it reduces the battery life.

4. You can deactivate temperature data to save battery life:

a) From Mosa2, click **Menu** = > **Expert** and enter the password copernic.

b) From Temperature Activation, select No.

Pitch & Roll

Procedure

1. Click the tab **Pitch and Roll**.

Information Spread Depth Temperature Pitch and Roll Channel Chirp General Configuration

- **2.** If you send pitch and roll data on the same channel:
 - a) From Pitch and Roll or Roll Boat Code/Channel Code, select a frequency.
 - b) From Pitch and Roll or Roll Telegram, choose between:
 - **Telegram CL**: sends data every 11 to 14 sec.
 - **Telegram VQ**: sends data every 5 to 9 sec.

Note: VQ sends data more often, but it reduces the battery life.

3. If you send pitch and roll data on two different channels:

a) From Pitch and Roll or Roll Boat Code/Channel Code, select a channel for roll data.

b) From **Pitch and Roll or Roll Telegram**, choose roll telegram between:

- **Telegram D3**: sends data every 3 to 8 sec.
- **Telegram AL**: sends data every 11 to 15 sec.

Note: D3 sends data more often, but it reduces the battery life.

- c) From Pitch Boat Code/Channel Code, select a channel for pitch data.
- d) From **Pitch Telegram**, choose between:
 - **Telegram D6**: sends data every 3 to 4 sec.
 - **Telegram AN**: sends data every 3 to 6 sec.
- **4.** You can deactivate pitch and roll data to save battery life:
 - a) From Mosa2, click **Menu** = > **Expert** and enter the password copernic.
 - b) To deactivate the roll: from **Pitch and Roll or Roll Activation**, select **No**.
 - c) To deactivate the pitch: from **Pitch Activation**, select **No**.

Configuring Spread Sensor Positioning Settings

You need to configure the settings of the signal sending positioning data.

About this task

The signal sending positioning data is called a chirp signal. It allows to calculate the bearing to the trawl.

Default chirp settings are already set, change them only if necessary.

Note: Only Master and Starboard sensors can send positioning data.

Important: Master and Starboard Spread sensors must have the same chirp settings.

Important: If you have other NBTE sensors (Trawl Explorer, Catch Explorer, Bottom Explorer...) we recommend to allow enough distance (min. 200 Hz) between their frequencies and the chirp bandwidth.

Procedure

1. Click the tab **Chirp**.

Information Spread Depth Temperature Pitch and Roll Channel Chirp General Configuration

2. If you use a Clump sensor with FIRM173, you need to deactivate the chirp signal from this sensor: from **Activate Chirp Mode**, select **No**.

3. For Master and Starboard sensors, from **Chirp Frequency**, enter the center frequency of the signal sent by the sensor.

4. From **Chirp Length**, enter the length (milliseconds) of the signal sent by the sensor.

5. From **Chirp Bandwidth**, enter a frequency bandwidth of the signal sent by the sensor. We do not recommend to enter a frequency bandwidth lower than 10 kHz.

For example, if the center frequency is 50 kHz and the bandwidth is 10 kHz, the signal will cover the frequency 45 kHz to 55 kHz.

6. Click **Apply** and make sure there is a green check mark \checkmark .

Configuring the Spread Sounding Channel

For XL bottles produced before S/N 3636606 (see sticker on the end cap), you need to configure correctly the up and down channels.

Before you begin

The sensor is connected to Mosa2.

About this task

Important: Only do this task if:

• You have XL bottles produced before S/N 3636606 with V2 firmware

For other bottles, leave default settings.

Sensors communicate with each other with the down sounder on the transducer. On XL bottles produced before S/N 3636606, the down sounder is connected to the up A1 connector.

To correctly receive spread data, you need to configure the channels on Mosa2 when these bottles have V2 firmware.

Procedure

- **1.** Click the tab **Channel**.
- 2. For a Master, Starboard and Clump sensor, select Channel Up.

Information	Spread	Depth	Temperature	Pitch and Roll	Channel	Chirp	General	Configuration
Select Cha	nnel							
Up (Channel Se	lected		Down Cha	annel Selec	ted		
	dī	Up rection	(SLAVE)	O MASTER	Down directi		SLAVE	
Select th	ne channel	to commun	icate with slave	Channel Up				_
				Channel Up Channel Down				
Rese	t Ar	oply						

3. Click **Apply** and make sure there is a green check mark \checkmark .

Calibrating the Pitch and Roll

You need to calibrate the pitch and roll of the sensors when they are placed in the sensor pockets.

Before you begin

Some trawl door manufacturers measure the pitch and roll offsets themselves and write it on the doors. Check on trawl doors.

About this task

The sensor pocket is usually welded to the door at a 15 to 20 degree vertical angle. This means that when trawl doors are vertical, the sensors will already have a pitch angle and maybe a roll angle. You need to calculate these angles and offset them in order to have 0° of pitch and roll when doors are vertical.

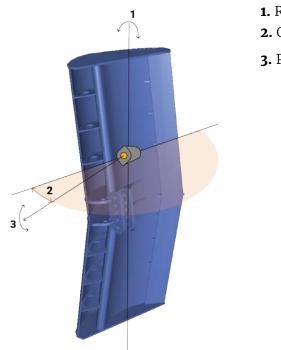
If you do not know the pitch and roll offsets, doors need to be taken out and placed on the ground in order to calibrate the pitch and roll.

Procedure

- **1.** If you already know the pitch and roll offsets, go straight to step 4.
- **2.** Prepare the doors:
 - a) Remove all rigging, shackles and attachment points from the doors.
 - b) Remove the net gear attached to the door.
 - c) Using a crane or forklift, place the door on a flat surface, such as a dock or similar location.
 - **d)** Using the necessary rigging, hang doors with angles as close to 0 degree as possible on the vertical and horizontal plane. Use a carpenter level to help you.

- **3.** Insert the sensor in the pockets on the doors.
- **4.** Open Mosa2 application.
- 5. Activate and deactivate the water-switch to connect the sensor to Mosa2 via a wireless signal.
- 6. Click the tab **Pitch and Roll**.

Information Spread Depth Temperature Pitch and Roll Channel Chirp General Configuration


- 7. Click Pitch and Roll Calibration, then:
 - a) If you already know the pitch and roll offsets, select **Manual**, then manually enter the offsets.

b) If you do not know the pitch and roll offsets, click **Auto Calibrate**. Offset values change according to the position of the sensor on the door.

- 8. Click Save.
- **9.** From **Opening Angle**, enter the angle between the door and the sensor (horizontal plane) in degrees. If you do not know the angle, ask the manufacturer for the angle of attack. If you cannot know the angle, you can put 35° but be aware that a wrong angle impacts pitch and roll measurements.

Roll
 Opening angle: 25-40°
 Pitch

10. Click **Apply** and make sure there is a green check mark \checkmark .

Slant Range Specific Settings

You need to set these settings for Slant Range sensors.

Configuring Sounding Frequencies

You need to configure sounding settings for both Slant Range sensors.

Before you begin

The sensor is connected to Mosa2.

Procedure

1. Click the tab **Pinger**.

2. From **Ping Down Frequency Pinger**, enter a frequency for the transmitting hydrophone signal.

We recommend:

- Bottom trawling: 34,000 kHz
- Mid-water trawling: 56,000 kHz
- **3.** From **Pinger Boat/Channel Code**, enter a frequency for the signal answering to the hydrophone.

4. From **Pinger Delay for Response**, enter a different delay for each sensor: we recommend 500 ms for port Slant Range and 600 ms for starboard Slant Range.

Note: This setting is the delay of response to the hydrophone. It corresponds to the time between when the sensor receives the signal and when the sensor sends the response signal to the hydrophone.

The second sensor must have a delay of minimum 100 ms more than the first sensor. This is to make sure positioning data from each sensor is differentiated when received by the hydrophone. Without a delay between the signals, the data is not recognized.

5. Click **Apply** and make sure there is a green check mark \checkmark .

Configuring Slant Range Positioning Settings

You need to configure the settings of the signal sending positioning data.

About this task

The signal sending positioning data is called a chirp signal. It allows to calculate the bearing to the trawl.

Default chirp settings are already set, change them only if necessary.

Important: Chirp settings need to be the same for both sensors.

Important: If you have other NBTE sensors (Trawl Explorer, Catch Explorer, Bottom Explorer...) make sure to allow enough distance (min. 200 Hz) between their frequencies and the chirp bandwidth.

Procedure

1. Click the tab **Chirp**.

Information Chirp Pinger Depth General Configuration

2. From **Chirp Frequency**, enter the center frequency of the signal sent by the sensor.

3. From Width Pulse Chirp, enter the length (milliseconds) of the signal sent by the sensor.

Width Pulse Chirp			
Width of Uplink Chirp	30 ms	•	(5 50 ms)

4. From **Band Width Uplink Chirp**, enter a frequency bandwidth of the signal sent by the sensor. We do not recommend to enter a frequency bandwidth lower than 10.

For example, if the center frequency is 50 kHz and the bandwidth is 10 kHz, the signal will cover the frequency 45 kHz to 55 kHz.

5. Click **Apply** and make sure there is a green check mark \checkmark .

Configuring the Uplink Power

You can increase the uplink power of the sensor to increase the power of the signal transmitted. It is useful if you have interferences or if the sensor is far from the vessel.

Before you begin

The sensor is connected to Mosa2.

Procedure

1. From Mosa2, click the tab General.

Information Trawl Explorer Pitch and Roll Depth Temperature General Configuration Firmware

2. From **Uplink Power Adjustment Level**, choose the uplink power (values in percentage are for Mosa version 01.02.00 and later):

Sensor	Recommended Uplink Powers	Conditions	Estimated Battery Life
Spread Sensor	1800 / 43%	Works for most conditions.	approx. 11 days (5.5 days for a Mini Spread Sensor)*
	4095 / 100%	 Sensor is far from vessel (e.g. more than 800 m depending on conditions, high depth) High level of interferences Issues receiving data Low SNR 	approx. 4 days (2 days for a Mini Spread Sensor)
Slant Range	2000 / 48%	Works for most conditions.	 XL bottle: approx. 76h Small bottle: approx. 38h
	4095 / 100%	 Sensor is far from vessel (e.g. more than 800 m depending on conditions, high depth) High level of interferences Issues receiving data Low SNR 	The more you increase the uplink power, the shorter the battery life becomes.

*Spread Starboard sensor usually has a longer battery life than a Master sensor (1-2 additional days).

Note: The average battery life also depends on the uplink frequency, sounding range and options activated.

Testing Measures

You can test the measures taken by the sensor (e.g. battery level, temperature, depth) to check that there are no faults.

Before you begin

The sensor is connected to Mosa2.

Procedure

- 1. From Mosa2, click **Menu** ≡ > **Expert** and enter the password copernic.
- 2. Click the tab **General**.

Information Trawl Explorer Pitch and Roll Depth Temperature General Configuration Firmware

3. From Measures Test, click Apply.

The measures taken by the sensor are displayed.

- **4.** Check the following measures:
 - The temperature is consistent with the sensor environment.
 - The depth is between 0 and 2m.
 - The battery is between 6.9V and 8.1V.

Troubleshooting: If depth is incorrect, you can put an offset in **Depth > Depth Offset**.

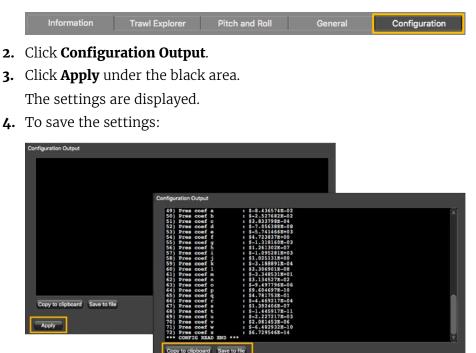
The other measures are only useful for the support service.

5. To save the test results on your computer:

Measures Test		
Copy to clipboard Save to file	Measures Test *** MEASURES TEST *** 01) Temperature : \$22.43 Deg C 02) Pressure : \$00.4 Bar 03) Degth : \$00 mV 04) V USB : \$2390 mV 05) WaterDetect : \$83 mV 06) V Batterle : \$7653 mV 07) V Uplink : \$3339 mV 08] Rumidity : \$-127 % **** MEASURES TEST END ****	
	Copy to dipboard Save to file Apply	

- Click **Save to file** to download the file.
- Or, click Copy to clipboard then press Cmd + V on a word processor like Pages to paste the contents.

Exporting Sensor Configuration Settings for Record Keeping


You can export in a *.txt file all the settings configured for the sensor (such as ping length, frequency, range, TVG...).

Before you begin

- You have finished configuring the sensor.
- The sensor is connected to Mosa2.

Procedure

1. Click the tab **Configuration**.

- Click **Save to file** to download the file on the computer.
- Or, click Copy to clipboard, then press Cmd + V on a word processor like Pages to paste the contents.

Exporting Sensor Configuration Settings for the Receiver

You can export on an XML file the sensor settings that you configured on Mosa2. You can afterward use this file when adding the sensor to a receiver.

Before you begin

- You have finished configuring the sensor.
- The sensor is connected to Mosa2.

Procedure

1. Click the tab **Configuration**.

Information Spread Depth Temperature Pitch and Roll Channel Chirp General Configuration

- 2. Click Config to XML.
- 3. Click Apply.

The settings are displayed.

4. To save the settings:

Config to XML	
	Config to XML <7xml version="1.0" encoding="utf-8"?>
Copy to clipboard Save to file	<pre><sensor device="NETSONDE" type="" uid="0000058963AC"></sensor></pre>
	Copy to clipboard Save to file

- Click **Save to file** to download the XML file on the computer.
- Or, click Copy to clipboard, then press Cmd + V on a word processor like Pages to paste the contents.
- 5. Change the name of the XML file saved on your computer.

Note: When you export the sensor settings, the XML file always has the same name. Changing its name will prevent you from overwriting it the next time you download sensor settings.

What to do next

See Adding the Sensor with a Configuration File on page 47 to know how to add the sensor to a receiver with this file.

System Configuration and Display

Learn how to configure the receiver to be able to receive and display door sensor data.

Note: This guide refers to the following versions: Scala 01.06.06-01.06.34, Scala2 02.10.x. If you use another version, the visual interface and options may vary.

Configuring the Hydrophones

You need to configure the hydrophones to correctly receive signals from the sensors.

Before you begin

Important: The two receiving hydrophones must have a minimum distance of **1 meter** between each other.

Important: You need to remove the 50kHz notch filter on the wideband preamplifiers.

Important: On **M4 and M6 systems**, the receiving hydrophones must be both connected to a hydrophone input between H1, H2 and H3 or both between H4, H5 and H6. The transmitting hydrophone for a Slant Range must be connected to a different set of hydrophone inputs than the receiving hydrophones (for example, if the receiving hydrophones are connected to H1 and H2, the transmitting hydrophone must be connected to a hydrophone input between H4, H5 and H6).

Tip: To help you remembering the configuration, always begin to configure the port hydrophone, then the starboard hydrophone. This way, most of the values associated with port side will be smaller than those of the starboard side (hydrophone number, node numbers...).

Procedure

- **1.** From Scala/Scala2, click **Menu** ≡ > **Expert Mode** and enter the password copernic.
- 2. Scala Click menu again, then Receivers.
- **3.** Scala2 Right-click the IP address of the receiver at the bottom of the page, then click **Configure Receiver**.
- 4. From the left side of the page, click Hydrophones.
- 5. Add the two receiving hydrophones, then enter the following settings:
 - a) From **Rx/Tx** select **Receive**.
 - **b)** From **Location**, select the port and starboard hydrophone. It is important to know which one is port and which one is starboard.

Note: If you do not select the location, you will not be able to configure positioning settings.

- 6. If you have Slant Range sensors:
 - **a)** Add a third hydrophone. This hydrophone is passive. It receives a digital signal from the receiver, then transmits an acoustic signal to the sensors.
 - b) From Rx/Tx, select Transmit.

Note: The voltage emitted by the receiver on the hydrophone is approx. 140 Volt RMS (depending on ping frequency).

MM22021		H1	H2		НЗ
M3 System	Front panel:				•
Hydrophones Hydrophone 1 Hydrophone 2	Hydrophones:	NC-1-08	NC-1-06		CLICK TO ADD
Hydrophone 3 Trawl Gear	Туре:	Active	Active		
Single Trawl Gear	Bandwidth:	30;60 kHz	30;60 kHz		
Sensors	Beam Width Angle:	55 *	55 °		
Positioning	Beam Height Angle:				
Settings	Location:	Port - Front	Starboard - Front	•	
	Horizontal Tilt Angle:	0			
	Vertical Tilt Angle:	0			
	Current status:		🗸 19.0 mA		
	Rx/Tx:	Receive	Receive		9

Figure 6: Hydrophone configuration for Spread sensors

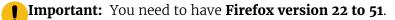
TS OSBW		H1_	112	нз	114
M4 System	Front panel:			٠	
Hydrophones W Hydrophone 1 W Hydrophone 2	Hydrophones:	MC - 1 - (11)(M)		CLICK TO ADD	HE - L - (CA)(HE)
 Hydrophone 1 Hydrophone 1 	Туре:	Active	Active		Passive
	Bandwidth:	30;60 kHz			33;60 kHz
- Hydrophane li A Travi Gear	Beam Width Angle:	55 °			55 °
Single Travil Gear Sensors Settings	Beam Height Angle:	35 *			55 (one cell) 35 (both cells) *
	Location:	Port - Hent	Starboard - Front		not cefnad
	Horizontal Tilt Angle:				
	Vertical Tilt Angle:				
	Current status:	0.0 mA	Am 0.0	<u>14</u>	0.0 mA
	Rx/Tx:	Receive	Receive		Trarsmt.

Figure 7: Hydrophone configuration for Slant Range sensors

Adding Sensors to the Receiver

Firmware	Mx Receiver version	Scala/Scala2 version
Spread Sensor	 M3/M5 05.01.00 or later M4 04.02.26 or later M6 05.01.00 or later 	01.02.06 or later
Slant Range	 M3/M5 05.01.00 to 07.00.07 M4 04.02.23 to 07.00.07 M6 05.01.00 to 07.00.07 	01.02.00 01 later

You need to add the sensors to the receiver in order to display their data on Scala/Scala2.


Important: Slant Range sensors are not compatible with receiver firmware versions from 08.01.01. The feature of distance measurement between the doors and the vessel is now performed by our later product the Duplex sensors.

Adding the Sensor with a Configuration File

You can add the sensor to the receiver with a configuration file that contains the sensor settings you configured on Mosa2.

Before you begin

• You have exported an XML file containing the sensor settings (See Exporting Sensor Configuration Settings for the Receiver on page 43).

Procedure

1. Enter your receiver IP address in Firefox web browser to access the system web page. The system web page gives access to the configuration of the receiver.

Note: Default IP addresses are: 192.168.10.177 for M3 and M6 receivers, 192.168.1.170 for M4 receiver. Add the address as a bookmark in Firefox to easily access it.

2. From the left side of the page, click **Sensors**.

3. Click the tab Add from Marport Sensor Config Utility.

4. Click **Browse** and select the XML file.

Information about the sensor is displayed.

5. Select a node from the list on the left. Nodes in green are already used.

Note: For Slant Range sensors, choose 22 for port and 25 for starboard sensor.

Note: For Spread sensors, choose:

- Master: 23
- Starboard: 26 (single trawl), 123 (twin trawls)
- Clump: 26

6. Click Add Sensor.

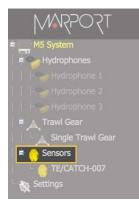
The sensor is added to the system, with all its settings.

Results

You can see incoming data in the control panels, in Scala Sensors Data/ Scala2 Mx.

What to do next

• If you want to apply filters on data received by the sensor, see Configuring Sensor Settings on page 50.


• You can now configure the display of incoming data in Scala/Scala2.

Adding the Sensor Manually

You can add the sensor to the receiver from Scala/Scala2, by entering the same settings as the ones in Mosa2.

Adding Sensors to the Receiver

- **1.** From Scala/Scala2, click **Menu** = > **Expert Mode** and enter the password copernic.
- 2. Scala Click menu again, then Receivers.
- **3.** Scala2 Right-click the IP address of the receiver at the bottom of the page, then click **Configure Receiver**.
- **4.** From the left side of the receiver page, click **Sensors**.

5. From the page Add Sensor Product select the options according to your type of sensor:

Type of sensor	Product Category	Product Name	Trawl Gear Location
Spread Sensor	Spread Master	Spread Master with Depth, Temperature, Position, Pitch and Roll	23
	Spread Starboard	Spread Starboard with Depth, Temperature, Position, Pitch and Roll	 Single trawl : 26 Twin trawl: 123
	Spread Clump	Spread Starboard with Depth, Temperature, Position, Pitch and Roll	26
Slant Range	Slant Range	Slant Range	 Single trawl: 22 and 25 Twin trawl: 22 and 122

Configuring Sensor Settings

Important: Make sure the settings you enter here are the same as in Mosa2.

Spread Sensors

	M			
SPREAD-MASTER-023				
Sensor Name				
Sensor Name: SPREAD-MASTER	-023			
Sensor Product: Spread Master wit	th Depth, Temperature, Position, Pitch and Rol			4
	Remove		Starboard Boat Code/Channel Code	
Sensor Options			Boat Code/Channel Code 🛛 Standart Value	C-1/CH2, C-3/CH3 : 41.548
Sensor Processing		<u> </u>	Custom value	32.792 kHz (32.792 - 57.207 kHz)
Detection: Detection and 2D	2 Sensitivity: Mediu	□ 3 🖻	Starboard Telegram	(device a direct kine)
Starboard			Starooard rengram	144
Frequency (Hz):	📕 🤚 Telegram: 🔊 🦻	Filter: Configure	Starboard Telegram Telegram AL	
Depth			6	
Frequency (Hz): Temperature Frequency (Hz): Rell Frequency (Hz): - Reld Frequency (Hz):	Telegram: D1	Filter: Configure	Depth Boat Code/Channel Code	
Temperature			Boat Code/Channel Code Standart Value	C-1/CH1 : 42.833
Frequency (Hz):	Telegram: n	Filter: Gonfigure	Custom value	38.200 kHz : (32.792 57.207 kHz)
- Roll 5	6	7		CONTRACT (OFFICE S OVER WITH
Frequency (Hz):	Telegram: D3	Filter: Configuro	6 Jepth Telegram	
- Pitch			Depth Telegram Telegram D12	-
Frequency (Hz):	Telegram: D6	Filter: Configure	Deput relegiant relegiant biz	
Positioning			Chirp Frequency	
Positioning Frequency (Hz):	38000			
Positioning Bandwidth (Hz):	8 10000		Set the central frequency of chirp 50.000 kH	z . (33.000 60.000 kHz)
Positioning Positioning Frequency (Hz): Positioning Bandwidth (Hz): Positioning Length (ms):	30		Chirp Band Width	
			Band Width of Uplink Chirp 10 kHz	. (5 10 kHz)
Filter	Configure 9		Chirp Length	
	Apply		Lenght of Uplink Chirp 30 ms	🔆 (5 50 ms)

1	Sensor name displayed in Scala/Scala2 and its features.
2	This setting helps detecting the signal of the sensor among other sensor or echosounder signals. Change only if you have issues receiving data.
	• Detection and 2D : default value. This setting helps distinguishing the sensor signals when there are a lot of interferences (e.g. echosounders). It selects the correct signals according to very selective criteria.
	• Detection : If you do not receive data, it may be because the Detection and 2D setting is too selective with the signal. Detection is less selective and allows more signals to be received.
	Detection for Seiner: no need for this sensor
3	 Low: if the signal of the sensor is high = the trawl is close to the vessel (SNR min. 18 dB). Medium: Default setting. Compromise between the two other settings (SNR min. 12 dB). High: if the signal of the sensor is low = the trawl is far from the vessel (SNR min. 6 dB).
4	Master and clump sensors only: enter the same frequencies and telegrams as those entered in Mosa2.
5	Enter the same frequencies as those entered in Mosa2 for each option.

6	Enter the same telegrams as those entered in Mosa2 for each option.
7	Click Configure to change filters applied on incoming data.
8	Enter the positioning parameters you entered in Mosa for Chirp .
9	Click Configure to change filters applied on positioning data.

Click **Apply** when you have finished.

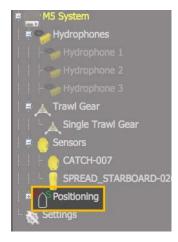
Slant Range Sensors

1	Sensor name displayed in Scala/Scala2 and its features.
2	This setting helps detecting the signal of the sensor among other sensor or echosounder signals. Change default setting only if you have issues receiving data.
	 Choose between 0-2 only if no interferences on the vessel (not recommended). 3 is default setting.
	 Choose between 4-6 if you have issues receiving data. It allows you to receive more data, but be aware they might be wrong data.
3	This setting also helps detecting the sensor signal. Leave default setting at Synchro 1.
4	Enter the frequency you entered in Mosa2 in Pinger Boat Code/Channel Code .
5	Enter the frequency you entered in Mosa2 in Ping Down Frequency .
6	Enter the pinger delay you entered in Mosa2 in Pinger Delay for Response .
7	Click Configure to change filters applied on incoming data.
8	Enter the positioning parameters you entered in Mosa for Chirp .

Click **Apply** when you have finished.

Configuring the Positioning Settings

You need to configure the positioning settings on the system web page (receiver page on Scala/Scala2.


Before you begin

You have added the sensors to the receiver.

i **Tip:** A spreadsheet is available on Marport support website to help you complete this page: go to the Useful Resources page.

Procedure

1. From the left side of the screen where the system is displayed, click **Positioning**.

The positioning configuration page appears.

The page is different depending on the receiver firmware version:

Positioning		Information
Baseline		
Baseline length (m)	1	Lever Arm Y
Misalignment X (*)	0	
Misalignment Y (*)	0	
Misalignment Z (*)	0	Lever Arm X
Lever Arm		Part Starboard
Lever Arm X (m)	0	
Lever Arm Y (m)	0	Y Baseline length
Lever Arm Z (m)	0	
Inputs		
Port Input	Hydrophone 2	
Starboard Input	Hydrophone 1	Post Starboard
Algorithm		Stem Bow
Compensate	•	
	Apply	kenver Arm 2

Figure 8: Receiver firmware below version 08.01

Positioning		Information	
Baseline Baseline kength (m) Hisalignment Angle (*)	1 0		$\stackrel{\uparrow}{\blacksquare}$
Inputs Port Iron Sarboard Iron	Hudeotone 1 M Hudeotone 2 M Classer Asphy		P S
			1. Baseline 2. Misalignment angle

Figure 9: Receiver firmware from version 08.01

- 2. In **Baseline**, enter the baseline distance and the misalignment angles:
 - a) Enter the distance between the two receiving hydrophones in **Baseline length**.
 - b) **Receiver firmware below version 08.01:** You can complete the misalignment X and Z, for more accurate positioning. See Calculations for Positioning System on page 54. Otherwise, you can enter 0. Enter 0 for the misalignment Y.

-Baseline-	
Dascille	
Baseline length (m)	1
Misalignment X (°)	0
Misalignment Y (°)	0
Misalignment Z (°)	0

c) Receiver firmware from version 08.01: Enter the misalignment angle shown on the drawing.

Note: The baseline is very important to have accurate positions of the doors.

3. Receiver firmware below version 08.01: In Lever Arm, leave 0 in the fields.

Lever Arm	
Lever Arm X (m)	0
Lever Arm Y (m)	0
Lever Arm Z (m)	0

4. In **Inputs**, enter the port and starboard hydrophones, according to the hydrophone configuration.

Note: On **M4 and M6 systems**, the receiving hydrophones must be both connected to a hydrophone input between H1, H2 and H3 or both between H4, H5 and H6.

5. Receiver firmware below version **08.01:** In Algorithm, select **Compensate** if you entered misalignment values in **Baseline**.

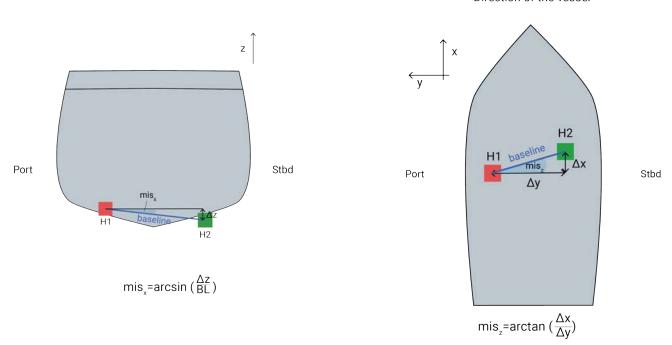
Compensate 🛛 🗨	

6. Click Apply.

Calculations for Positioning System

When configuring the positioning system on the system web page (Scala/Scala2 receiver page), you must consider the position of the hydrophones. When they are misaligned, you can calculate their misalignment angles with the following calculations.

Tip: A spreadsheet is available on Marport support website to help you complete this page: go to the Useful Resources page.

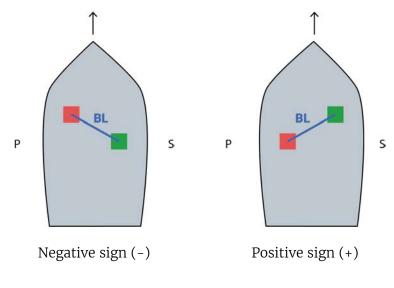

Note: Baseline length is the distance between two hydrophones. It must be in meters.

Receiver firmware below version 08.01: There are two misalignment angles that you should calculate. Misalignment Z is the more critical for correct positioning data. Make sure these calculations are correct if you enter them in Scala/Scala2.

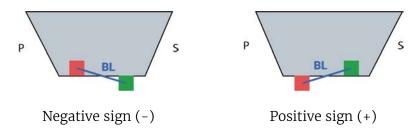
Receiver firmware from version 08.01: Calculate misalignment Z only.

The drawings below show the misalignment angles and how to calculate them:

Misalignment X (angular offset around X axis) Misalignment Z (angular offset around Z axis)



Direction of the vessel


Sign of Angles

Once you have calculated X and Z misalignment angles from the above formulas, you need to add a positive or negative sign to the result. The sign depends on the offset of the hydrophones. Refer to the drawings below to know if you need to add a negative or positive sign to misalignment Z and X. The sign of the angles is important to receive correct positioning data.

Misalignment Z (view from above)

Misalignment X (view from behind)

Adding Data from External Devices

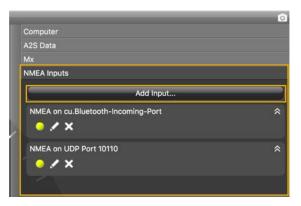
You need to add to Scala/Scala2: warp lengths (Spread sensors only), GPS coordinates and heading data received from devices such as winch control systems or GPS compass.

About this task

See Appendix B: Compatible NMEA Sentences from Winch Control Systems, GPS and Compass Devices on page 138 to know which NMEA sentences are compatible.

Note: Heading data is very important to have precise positioning of the trawl.

Note: Make sure you receive data from only one GPS device or the trawl will not be displayed correctly.


Note: Warp lengths can be received from a winch control system, or entered manually in the control panels, under **Manual Estimation**. If no warp lengths, the positioning will be calculated from the bearing, spread distance and depth data sent by the Spread sensors. However, we strongly recommend to receive warp lengths from a winch control system. Without it, the accuracy of the positioning will be reduced.

Procedure

1. Scala Click Menu = > Settings, and under the NMEA Inputs tab, click Add.

2. Scala2 In the control panels, click NMEA Inputs > Add input.

- 3. Choose the type of connection between serial port, UDP or TCP socket.
- **4.** If using a serial port:
 - a) In Port, select the incoming data you want to add.
 - b) In Baud, choose the transmission speed (bit per second).
 - c) Leave the other default parameters if you have no specific requirements.
 - d) Select a different input format if you have Marelec or Rapp Marine/Rapp Hydema equipment. Otherwise, select **Standard NMEA format**.
 - e) To broadcast the data received on this serial port to other equipment than Scala/Scala2, select **Output to UDP**, then enter a port above 1000 and enter 255.255.255.255 to broadcast to all equipments, or enter a different subnet mask.
- 5. If using UDP:
 - a) enter the port of the server sending data.
- **6.** If using TCP:
 - a) Enter the IP address of the server and the port.
 - **b)** Select a different input format if you have Marelec or Rapp Marine/Rapp Hydema equipment. Otherwise, select **Standard NMEA format**.
 - c) To broadcast the input data to other equipment than Scala/Scala2, select **Output to UDP**, then enter a port above 1000 and enter 255.255.255.255 to broadcast to all equipments, or enter a different subnet mask.
- 7. Click **OK**.

Results

The new data appears in the control panel. LEDs blink green when data is received (it may be steady green if data is received continuously). When communication with the NMEA devices is lost, LEDs do not blink anymore.

• Scala Sensors Data > NMEA.

ensors Data	
Scala Computer	
NMEA	
GPS on UDP 10110	
Position	64°21'770 N 012°26'763 W
Heading (True)	53.1° 🔍
COG	41.1° 🎱
sog	4.2 kn 🍮
RR Winch Control on c	u.usbserial
Stbd Warp Length	1055.8 m 🔍
Port Warp Length	1049.0 m 🕘
Stbd Warp Tension	4.5 t 🍮
Port Warp Tension	4.4 t 🎱

Scala2 NMEA Inputs control panel and in the Ownship panel.

NMEA on UDP:10110	
GPS	
013	
Position	64°23'545 N
Position	012°19'607 W
Heading (True)	45.3° 👋
COG	52.4° 👻
SOG	3.5 kn 🔮
NMEA on cu.usbserial	
RR Winch Control	
Stbd Warp Length	1568.2 m 🔮
Port Warp Length	1556.6 m 🧶
Stbd Warp Tension	5.0 t 🛎
Port Warp Tension	5.0 t 👻

•

Trouble: Scala2 If you see a warning sign in front of data it means that you receive the same data from more than one device. Right-click the data, then click **Configure Data** and select the primary source.

63°18'074 N 019°49'306 W		
216.6° 🕻		
4.1 kn 🤇		
-3.3° 🤇		
-3.1° 🤇		
307.2° 🤇		
12.4 kn 🗧		
6°S 🤇		
285.5 m 🕯		
9.2 °C		

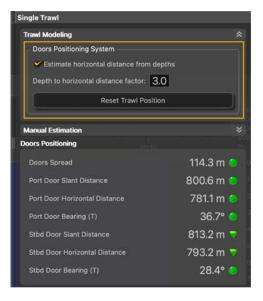
Configuring Trawl Settings

You need to configure trawl settings to display the trawl on the chart and vessel 3D overview.

Procedure

- 1. Scala From the control panels, click **Data Processing** > **Trawl Modeling** and from **Doors Positioning System**, select:
 - For a Slant Range: Uses slant distances and bearings.

• For a Spread Sensor: **Uses warp lengths and bearings**. Select even if you do not receive warp length data.


Doc	rs Positionning System
	Uses slant distances and bearings
۲	Uses warp lengths and bearings
	Uses warp lengths and doors spread
spri leng ranj one war	bearings from the positioning sensors, the ad from the door spread sensors and the warps ths from NMEA inputs. Always ignores slant ces. Needs both port and starboard bearings, or bearing and the spread. In other cases or if is lengths are not available, fallbacks to the i method.

- **2.** Click **Menu ≡** > **Settings**.
- **3.** From the tab **Trawl**, complete **Headline (H)**, **Bridle (B)** and **Sweepline (S)** with accurate measurements of your trawl gear.

	Scala	
• •		
Units Ownship	Trawi Storages Data Recorder NMEA Inputs NMEA Outputs	Alarms
Door Model	Polar-Jupiter	•
Headline (H):	30.0 m	•
Bridle (B):	30.0 m	•
Sweepline (S):	100.0 m	•
Doors angle of attack:	+30.0°	•
J		Close

	Sc	ala2		
	Scala	Settings		
Units NN	and the second second)wnship	Trawl	Alarms
Туре		1996		
AUTO		\mathcal{D}	())	
Net				
Headline (H):	30.0 m			* *
Bridle (B):	30.0 m			* ^
Sweepline (S):				
Doors				
Height:		3.0 m	⊳	
	ensors to bottom:	-		
Angle of attack		+30.0°		•
Clumps				
2	_	rt-Clump	⊳⊳	
			Q	Close

Note: If you receive neither warp lengths nor slant distances, you can select **Estimate** horizontal distance from depths in **Trawl Modeling** > **Doors Positioning System**. You will get an estimation of the horizontal distance between the door sensors and the boat calculated from the depth of the sensors.

MARPORT 160

Configuring Data Display on Scala/Scala2

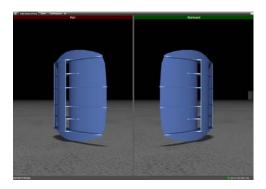
You can display on pages in Scala/Scala2 measurements taken by the sensors, such as the spread distance or the pitch and roll of the doors. You can also use the chart or 3D view to display the position of the trawl.

About this task

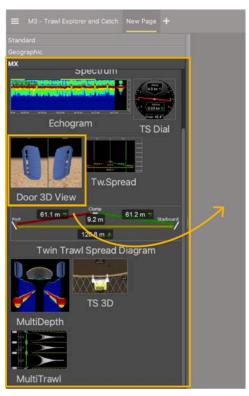
Sensor measurements are displayed in the control panels, under Scala Sensors Data / Scala Mx. Data title should be:

- Spread Master / Spread Slave / Spread Clump for Spread sensors.
- Slant Range for Slant Range sensors.

The title is followed by the node where the sensor was placed when added to the system.


Spread Sensor: Displaying Door 3D View

Procedure

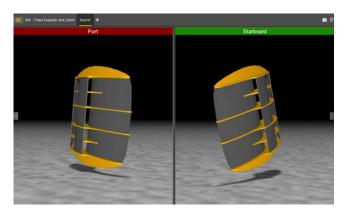

- From the top left corner of the screen, click Menu ≡ > Customize and enter the password eureka.
- 2. From the top toolbar, click the add icon +.
- 3. Scala From Standard Pages, click **Trawl Doors (Front)** to see doors from vessel or **Trawl Doors (Back)** to see doors from trawl.

Port and starboard trawl doors are displayed.

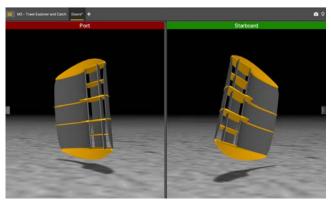
4. Scala2 Open the customize panel, then go to **Mx** and drag **Door 3D View** to the page.

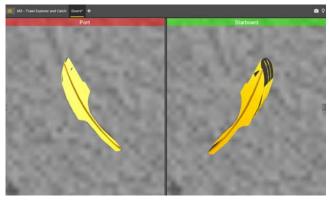
- **5.** To change the door or clump model:
 - a) From the top left corner, click **Menu** \equiv > **Settings**.
 - **b)** Click the **Trawl** tab and select the models of doors and clump from the lists, using left and right arrows.

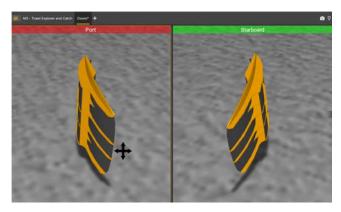
	Scala S	lettings		
Units N	MEA Outputs O	wnship	Trawl	Alarms
Туре				
AUT)	D	(Y)	
Net				
Headline (H):	30.0 m			
Bridle (B):	30.0 m			-
Sweepline (S):	100.0 m			
Doors				
~	Mar		⊳	
Height:		3.0 m		* •
Distance from	sensors to bottom:	1.0 m		* *
Angle of attack		+30.0°		•
Clumps				
		t-Clump	⊳	
			Į.	Close


c) Scala Click the **Trawl** tab and select the models from the drop-down lists.

Units	Ownship	Trawl	Storages	Data Recorder	NMEA Inputs	NMEA Outputs	Ala	rms	
Door Model		Morge	Morgere-Exocet						
Clump I	Model	Thybo	oron-Clump					•	
Headlin	ie (H):	30.0) m				T		
Bridle ()	B):	30.0) m				T	÷	
Sweepi	ine (S):	100.	0 m				T	Ŀ	
Doors a	ingle of attack:	+30	.0°				•	A	


6. You can also change the viewing angle: looking from the trawl toward the vessel (front), or from the vessel toward the trawl (back).


- **7.** To change the view angle of the door, right-click the 3D view and choose:
 - Horizontal Camera to see the doors from the front:


Or back:

• **Vertical Camera** to see the doors from above.

• Free Camera to adjust the viewing angle yourself, by clicking and dragging the 3D doors.

- **8.** To display or hide the ground, right-click the 3D view and select or not **Display Ground**. You should leave the ground displayed, in order to see if the doors are touching it.
- **9.** To save the changes you made:
 - **1.** To rename the page, right-click the name of the page and click **Rename**.
 - **2.** To save the page, right-click the name of the page and click **Save Changes**.
 - **3.** Scala To have a backup of the page, right-click the name of the page and click **Save page template as**.

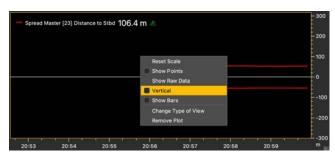
Your page is saved in Scala's page backups.

w Page*	L Move to New Window	New Pag	1e* +
			Move to New Window
	Rename		Rename
	Remove Page		Delete
	Clone Page Export File		Hide
	Save in Custom Pages		Clone
	Save Page Changes		Export File
	Revert Page to Saved		Save Changes
	Flip Page		Revert to Saved

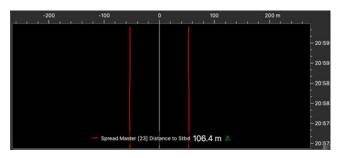
10. Deactivate the Customize mode when you have finished customizing pages: click Menu ≡ > Customize again.

Spread Sensor: Displaying Single Trawl Spread

Procedure


- From the top left corner of the screen, click Menu ≡ > Customize and enter the password eureka.
- Open the control panels and from the Scala Sensors Data / Scala Mx tab, click + hold distance data from spread sensors such as Distance to Stbd from a Spread Master and drag it to the page display.

	Spread Master [23]	
	Depth	173.5 m 🔺
	Temperature	7.8 °C 🔻
	Pitch	+11.1° 🔺
	Roll	+15.7° 🔻
	Distance to Stbd	138.7 m 🍮
	Distance to Clump	70.2 m 🔺
	Depth Variation	0.0 m/s 🤝
K	Spread Clump [26]	
	Depth	171.9 m 🔺
	Pitch	+11.1° 🔻
	Roll	+5.9° 🔻
	Distance to Stbd	70.3 m 🔵


3. In Choose new Gauge Type, select History Plot.

		- 300
Label	— Spread Master [23] Distance to Stbd 106.4 m	- 200
Dial		- - 100
History Plot		- - 0
Gauge		
Twin Trawl Spread Plot		-
Twin Trawl Spread Diagram	0:57 20:58 20:59	E-300 m

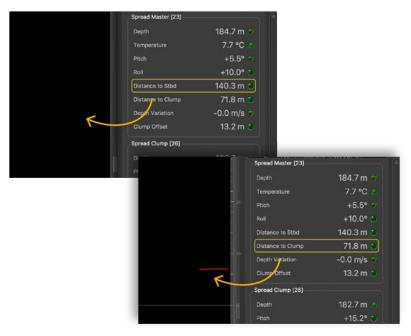
4. Right-click the history plot and select **Vertical**.

The history plot becomes vertical. You can see the distance between the port and starboard door.

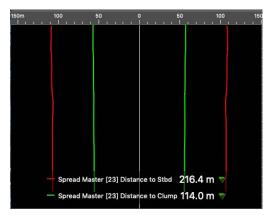
5. If you have a firmware version 08.03 and above, you can display the battery level on the plot. Right-click the title of the plot and click **Battery Indicator**.

What to do next

Deactivate the Customize mode when you have finished customizing pages: click **Menu** \equiv > **Customize** again.


Spread Sensor: Displaying Twin Trawl Spread

Before you begin


You need to have twin trawls and Spread sensors with dual or triple distance option.

Procedure

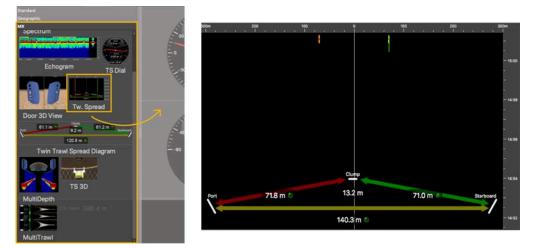
- From the top left corner of the screen, click Menu ≡ > Customize and enter the password eureka.
- If you have twin trawls with 2 measured distances, drag to the page the Spread Master Distance to Stbd, then drag Distance to Clump above the plot of the distance to starboard. Right-click the plot and click Vertical.

Distances between the port door and starboard door and between the port door and clump are displayed.

- **3. Scala** If you have twin trawls with **3 measured distances**:
 - Drag to the page one spread distance such as a Spread Master **Distance to Stbd**, then rightclick the plot and click **Twin Trawl Spread Plot**. You can know if the clump is centered when the yellow dashed line is above the red and green lines.

— Spread Master [23] Distance to Stbd 134.9 m 💿		- 300 - - 200
	Classic Plot ✓ Single Trawl Spread Plot	100
	Twin Trawl Spread Plot Reset Scale	
	Show Raw Data Show Points Vertical	- 100 - 200
200 150m	100 50 0 50	A CONSTRUCT OF A CONS
1904		- - - - - - - - - - - - - - - - - - -
Port 67	.5 m 9.2 m	- 68.3 m Starboard - 16:06
	134.5 m 🔺	- 16:04

• Or, click **Customize**, then drag the **Twin trawl Spread Diagram** to only display the diagram.


	0
TTE	Sensors Data
60	Ownship and Trawl Data
	Data Processing
30 3	Data Estimation
tch0	Customize
-30	Dial
mult	Depth 42.7 m 🔹 0 10 20 30 40 50 60 70 60 00 100
TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	Label Gauge
30 60 90	Wind Dial Horizon WS Dial
90	TS Dial
\sim	Echogram
	Door 3D View
	TS 3D SB 3D Chart

Now you can see the distances between:

- port door and starboard door,
- port door and clump,
- clump and starboard door.

Note: Right-click the plot and click **Single Trawl Spread Plot** if you need to switch to single trawl.

- **4. Scala2** If you have twin trawls with **3 measured distances**, open the **Customize** panel and go to the **Mx** tab.
 - Click + drag a **Twin Trawl Spread Plot** to the page. You can know if the clump is centered when the yellow dashed line is above the red and green lines.

MNRPORT | 69

• Or click + drag a **Twin trawl Spread Diagram** to only display the diagram.

Now you can see the distances between:

- port door and starboard door,
- port door and clump,
- clump and starboard door.

Note: Right-click the plot and click **Single Trawl Spread Plot** if you need to switch to single trawl.

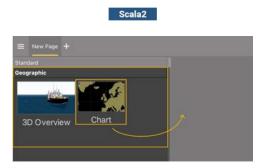
What to do next

Deactivate the Customize mode when you have finished customizing pages: click **Menu** \equiv > **Customize** again.

Displaying the Chart View

Before you begin

• You must be in **Customize** mode to do this task.


You must have:

- Incoming GPS data and heading data.
- Spread or Slant Range sensors with bearing measurement
- Warp lengths or Slant Range sensors giving distance to vessel

Procedure

- **1. Scala** From the lower part of the control panels, click **Customize**.
- 2. Scala2 Open the customization panel, then go to Geographic.
- **3.** Click + drag **Chart** to the page.

4. Drop it in a yellow area.

The chart view is displayed. The heading of the vessel, the port (red) and starboard (green) door paths appear by default.

Chart Trident New Page New Page					_				0
	GPS Position	64°36'156 012°26'046 \	N N						8
64*36 <i>75</i> 4									
64136 50N				7 }					
				/					
64136 252									
RR Winch Control Stbd Warp Length 838.9 BR Winch Control Port Warp Length 823.0			12000	00	-200 -100		100	200	300 m - 20:52 - 20:50
64'30'00M 20:35 20:40 012	20:45	20:50	600 			Doors Distance 105	.3 m 🔺		-20:48 -20:46

5. To customize the display, right-click the page to display the setting menu.

Trouble: If the view looks empty it might be because the view is not centered on the vessel. Open the setting menu and click View > Center on Ownship or Center on Ownship and Trawl.

Displaying the Vessel 3D Overview

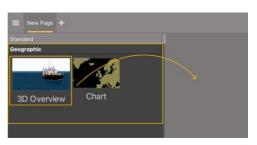
You can display a 3D overview of the vessel system if you have the Scala Full version. To know if you have the 3D enabled, check in **Menu** \equiv > **About Scala**.

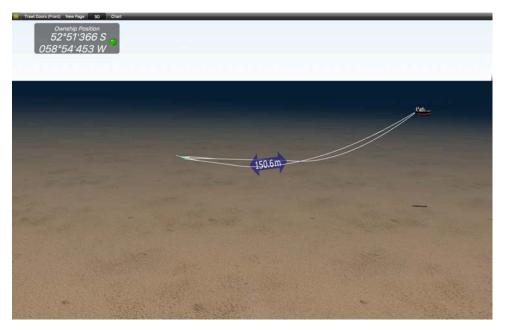
Before you begin

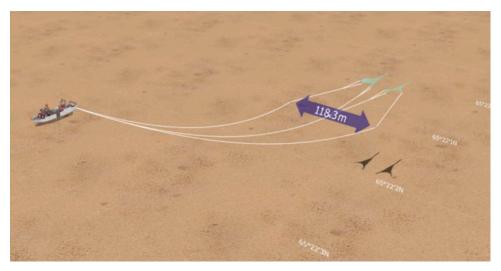
You must be in **Customize** mode to do this task.

You need to have incoming data from:

- GPS (position, heading)
- Sensors with positioning
- Warp lengths or Slant Range sensors giving distance to vessel


Procedure


- **1. Scala** From the lower part of the control panels, click **Customize**.
- 2. Scala2 Open the customization panel, then go to **Geographic**.
- 3. Click + drag the **3D Overview** to the page.


A 3D view of the vessel and trawl is displayed.

If you have twin trawls, you can see it on the 3D view as well. Make sure you have configured twin trawls in the receiver settings.

- 4. To change the vessel 3D model, from the upper left corner of the screen click Menu ≡ > Settings and click the Ownship tab.
- **5.** To change the view, you can use the numeric keypad: press the keys 0 to 9 to change the viewing angle.
- **6.** Right-click the 3D view and click **Center on Ownship** to focus on the vessel or **Center on Trawl** to focus on the trawl.
- 7. Scala Right-click the 3D view and choose:
 - Moves Camera with to select which part of the system the camera follows.
 - **Reset Camera Position** to come back to the default view.
 - Fix Camera on Ownship so that the camera moves with the vessel.

What to do next

Deactivate the Customize mode when you have finished customizing pages: click **Menu** \equiv > **Customize** again.

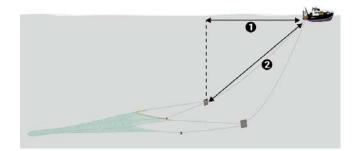
Doors Positioning Data

You can display data related to the position of the doors.

Before you begin

Note: Minimum data required to display **Doors Positioning** are GPS positioning, depth, door spread distance, port and starboard door bearings. However, we strongly recommend to receive warp lengths from a winch control system. Without it, the accuracy of the positioning will be reduced.

Procedure


In the control panels, go to the trawl data. Scala2 In Scala2, the name of the panel depends on the trawl gear setup. The panel can display **Single Trawl**, **Twin Trawl**, **Triple Trawl** or **Quad Trawl**.

A2S Data	
Single Trawl	
Trawl Modeling	
Manual Estimation	
Doors Positioning	
Doors Spread	110.0 m 🌑
Port Door Slant Distance	806.6 m 🌒
Port Door Horizontal Distance	786.7 m 单
Port Door Bearing (T)	36.6° 单
Stbd Door Slant Distance	819.1 m 🌒
Stbd Door Horizontal Distance	798.4 m 🎱
Stbd Door Bearing (T)	28.7° 🔍

Coole 2

i Tip: Scala2 In Scala2, this panel displays the door horizontal distance (1) and slant distance (2) to the boat:

Scala Scala displays only the horizontal distances.

Bearing Angles

Procedure

1. Scala displays the relative (R) and true (T) bearing angles of the doors. Relative bearing angle is the angle of the doors relative to the heading of the vessel and true bearing angle is the angle of the doors relative to the true North. Use drag and drop to display them on a page.

Spread Master [23]]		
Depth	257.6 m 🔺		
Temperature	3.9 °C 🔻		
Pitch	+16.0° 🝊	Slant Range [25]	
Roll	+1.7° 🍸	Depth	145.7 m 单
Bearing (R)	+205.0° 🍮	Bearing (R)	+170.3° 🛆
Distance to Stbd	105.2 m 🔻	Slant Distance	843.9 m 🎱
Bearing (T)	17.1° 🌑	Bearing (T)	232.3° 🌢
Depth Variation	0.0 m/s 🔺	Depth Variation	-0.0 m/s 🍮
		<u></u>	

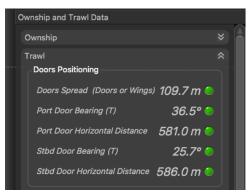
2. Scala2 Scala2 displays the relative (R) bearing angles of the doors. Angles are relative to the stern, unlike Scala where angles are relative to the heading of the vessel. Angles toward port side are negative and angles toward starboard side are positive. See About Trawl Positioning on page 13 for drawings.

Spread Master [23]	
Depth	m 🥥
Temperature	7.2°C ●
Pitch	+8.9° 🔍
Roll	+2.1° 🌒
Bearing (R)	-2.3° 🔵
Distance to Stbd	117.7 m 🔵
Distance to Stbu	117.7 m 🔍

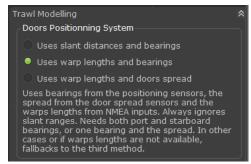
Displaying Trawl Positioning from Scala/Scala2 on Olex

You can export trawl positioning data coming from Scala/Scala2 to Olex software.

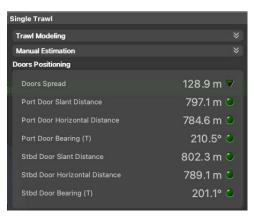
Before you begin


- Olex software version must be able to read **PSIMS** NMEA data.
- Olex software must have the ITI option (displays net position).
- You must have a GPS and door positioning sensors.

Procedure


- **1.** From Olex, click **Settings** and check:
 - a) There is the **ITI** option. It allows the display of the trawl when positioning data from Scala/Scala2 is received.
 - b) The option **Reversed ordering of ITI door sensors** is **not** selected.

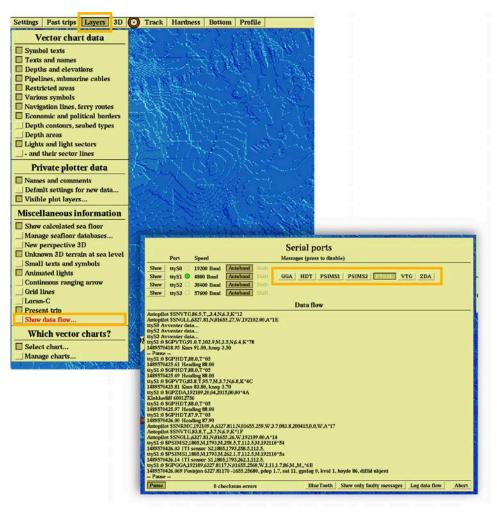
Settings Past trips Layers 3D	O Track	Hardness	Bottom	Profile	
Olex 8.8 from 3/2-2016 Serial number 9092 - 824 Gb S63 User Permit B0EE16D69 Experimental versionITII	A4D5C4E2		3830		1. 11 P.
Ship length	0.0 mete	rs << <	> >>		CALCULATION OF
Ship width	0.0 mete	rs << <	3 22		SAME ONLY
From fore to GPS	0.0 mete	rs << <	> >>	11	180 0 1
From port to GPS	0.0 mete	rs << <	> >>		\$2172 Sto
From fore to echo sounder	0.0 mete	rs << <	> >>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C North T
From port to echo sounder	0.0 mete	rs << <	5 55		12 14 14 13
Echo sounder depth	0.0 mete	rs << <	5 55		a real free
Echosounder water sound speed	1500 m/s	<c <<="" th=""><td>> >></td><td>Charles .</td><td></td></c>	> >>	Charles .	
Time offset from UTC	+0:00				Carl March
Correction of autopilot lag	0 seconds				11 S. P. S.
GPS position lag	0.0 second	te ee			1 & A
Minichart			Edit	le al	and the second
From meters to nautical miles at Size of ship symbol Small	Medium	La	1.0nm arge		
Size of ship symbol Small No depths below 10m 2 Course line 0.1nm 0.3nm 1.6 Switching to next waypoint in automation 1.0 1.0 1.0	Medium 20m 30 20m 3min 20m 3min 20 Auto Mai eet Met	m D 10min nual No a ers Fa	arge isabled		
Size of ship symbol Small No depths below 10m 2 Course line 0.1mm 0.3mm 1.4 Switching to next waypoint in autom Depths and heights thown as Farguage Depths and heights thown as Farguage Norsk English Svenska Hellas Japan Show calculation progress Adjust bottom calculation for tid Continuously updated ship positi Genering of 11 door se	Medium 20m 300 0nm 3min av Anto Mai eet Met ol Francais Pycckau e level on nsors	La m D 10min mual No a ers Fa Italiano	arge isabled 1 hour uutopilot athoms Íslenska		
Size of ship symbol Small No depths below 10m 2 Course line 0.1nm 0.3nm 1.0 Switching to next waypoint in autom Depths and heights shown as F Language Norsk. English Españ Svenska Hellas Japan Adjust bottom calculation progress Adjust bottom calculation for tid	Medium 20m 300 0nm 3min av Anto Mai eet Met ol Francais Pycckau e level on nsors	La m D 10min mual No a ers Fa Italiano	arge isabled 1 hour uutopilot athoms Íslenska		
Size of ship symbol Small No depths below 10m 12m Course line 0.1mm 0.3mm 1.d Switching to next waypoint in autona Depths and heights shown as F Language Norsk English Españ Svenska Hellas Japan Show calculation progress Adjust bottom calculation for tid Continuously updated ship positi Reversed ordering of IT loor se Search for suspicious depth data	Medium 20m 300 0nm 3min av Anto Mai eet Met ol Francais Pycckau e level on nsors	La m D 10min mual No a ers Fa Italiano	arge isabled 1 hour uutopilot athoms Íslenska		
Size of ship symbol Small No depths below 10m 12m Course line 0.1nm 0.3nm 1.4 Switching to next waypoint in auton Depths and heights shown as F Language Norsk English Svenska Hellas Japan Show calculation progress Adjust bottom calculation for tid Continuously updated ship positi Reversed ordering of 11 door se Search for suspicious depth data. Delete selected measurements Read data and software Save data to storage device	Medium 20m 300 0nm 3min av Anto Mai eet Met ol Francais Pycckau e level on nsors	La m D 10min mual No a ers Fa Italiano	arge isabled 1 hour uutopilot athoms Íslenska		
Size of ship symbol Small No depths below 10m 2 Course line 0.1nm 0.3nm 1.0 Switching to next waypoint in autom Depths and heights shown as F Language Norsk. English Españ Swenska Hellas Japan Show calculation progress Adjust bottom calculation for tid Continuously updated ship positi Reversed ordering of 171 door se Search for suspicious depth data. Delete subceled measurement Read data and software	Medium 20m 300 0nm 3min av Anto Mai eet Met ol Francais Pycckau e level on nsors	La m D 10min mual No a ers Fa Italiano	arge isabled 1 hour uutopilot athoms Íslenska		


2. Scala Open the control panels and in **Ownship and Trawl Data** > **Trawl** check that you receive **Door Positioning** data.

3. Scala In Data Processing > Trawl Modelling > Door Positioning System, select Uses slant distances and bearings if using a Slant Range sensor or Uses warp lengths and bearings if using a Spread sensor.

4. Scala2 Open the control panels and in trawl data, click **Doors Positioning**. Check that you receive door positioning data.

Note: If you receive neither warp lengths nor slant distances, you can select **Estimate** horizontal distance from depths in **Trawl Modeling** > **Doors Positioning System**. You will get an estimation of the horizontal distance between the door sensors and the boat calculated from the depth of the sensors.


- 5. Connect a GPS to Scala/Scala2 and Olex.
- **6.** Using a serial to USB cable, connect the USB end to the Mac computer and the serial end to a serial port on the Olex machine (ttyS0/1/2/3).
- **7.** To configure the export of trawl positioning data from Scala/Scala2:
 - a) Click **Menu** = > Settings.
 - b) Under the NMEA Outputs tab, click Add.
 - c) In **Port Settings**, select **Serial port** and enter a port name depending on your serial to USB cable, such as cu.usbserial. Enter a baud rate between 4800 and 57600 (Olex will automatically set the same rate if it is in Autoband mode).

Port Se	ttings	Data	a to Emit
Туре: 🤇	Serial port	O UDP port	C TCP Serve
Port:			-
Baud:	4800		•
Data Bits:	8		•
Parity:	None		•
Stop Bits:	1		\mathbf{r}
Flow Control:	None		-

- d) In Data to Emit, select Emit only selected data types and deselect all the items. This is to make sure Scala/Scala2 do not output these data. If you do not do this, Scala/Scala2 outputs all data and this slows down Olex.
- e) Select Emit trawl positioning sentence and click Best sentence for Olex (\$PSIMS).

- **8.** If you use a version of Scala older than v. 01.06.06, you cannot choose the sentence that is sent. PSIMS and PTSAL sentences are sent at the same time. This causes display issues on Olex, so you need to disable PTSAL sentences from Olex:
 - a) From Olex, click Layers > Show data flow.
 - b) In the list of sentences, click PTSAL to disable it.

9. In NMEA Outputs in Scala/Scala2, check that there is a green LED next to the created output.

Troubleshooting: If the LED is grey it means the port is not accessible. Check that you chose the correct port from the list of ports in **Port Settings**.

- **10.** From Olex, check that you correctly receive data:
 - a) Click Layers > Show data flow.
 - **b)** In **Data Flow**, you can see the NMEA sentences that are received. Check if there are PSIMS1 and PSIMS2 sentences with correct data.

					Serial	ports			
	Port	Speed			Messages (p	ress to disal	ole)		
Show	ttyS0 C	19200 Baud	Autobaud	Shift					
Show	ttyS1	4800 Band	Autobaud	Shift	GGA HD	T PSIMS	1 PSIMS2 Prisal	VTG ZDA	
Show	ttyS2 C	38400 Baud	Autobaud	Shift					
Show	ttyS3 C	57600 Baud	Autobaud	Shift					
					Data	flow			
		G,86.9,T.,3.4,N			_				
	it \$SNGLI zventer da	1,6327.81,N,016	55.27,W,1921	02.00,A*11	Б				
	venter da								
	rventer da								
		1.0,T,102.9,M; rs 91.00, knop							
Pause		is 71.00, Kilop	5.00						
		88.0,T*05							
		ading 88.00							
		88.0,T*05							
		ading 88.00	THE REAL						
		3.8,T 95.7 M.3							
	9270423.81 Kms 83.80, kmp 3.70 1: 9 GPC DA 192109.20.94.2015.00.00.*4A 1: 9 GPC DA 192109.20.94.2015.00.00.*4A 1: 9 GPC DT DA 198.0.***********************************								
				.259,W.3.	7,083.8,200415,	0.0,W,A*17			
				09 00 4*14					
ttyS1:0	SPSIMS1	1805.M.1793.M	262.1.T.112.5	M.192110)*5a				
		sensor S1,180							
					1.7,86,M,,M,,*6				
		sisjon 6327.81	170 -1655.256	80, pdop 1	.7, sat 11, gpsla	ag 0, kval 1,	hoyde 86, diffid ukjent		
Pause									
Pause		0 c)	hecksum error	rs	1	BlueTooth	Show only faulty message	ges Log data flow	Abort

If Olex is not connected to Scala/Scala2, no NMEA sentences are displayed.

			Serial ports			
Port	Speed		Messages (press to disal	ole)		
Show ttyS0 0 1	19200 Baud	Autobaud Shift				
Show ttyS1 0 9	9600 Baud	Autobaud Shift	PTSAL			
Show ttyS2 3	38400 Baud	Autobaud Shift				
Show ttyS3 0 5	57600 Baud	Autobaud Shift				
Activate GGA to	o see ship j	position				
Activate ZDA or	RMC to	get correct time a	nd date			
			Data flow			
EksportRekt 5 200 tr						
FerdigEksportRekt t						
EksportRekt 25 200						
EksportRekt 5 200 tr						
FerdigEksportRekt t						
FerdigEksportRekt t		.gz				
ttyS2 Avventer data. ttyS0 Avventer data.						
ttyS0 Avventer data.						
ttyS1 Avventer data.						
EksportRekt 5 200 tr		9Z				
FerdigEksportRekt t						
EksportRekt 5 200 tr						
FerdigEksportRekt t						
EksportRekt 25 200						
EksportRekt 5 200 tr						
FerdigEksportRekt t						
FerdigEksportRekt t Ny Skipsdata	tmpeksport0	.gz				
ttvS2 Avventer data.						
ttyS1 Avventer data.						
ttyS1 Avventer data.						
ttyS0 Avventer data.						
Ny Skipsdata						
EksportRekt 5 200 tr						
FerdigEksportRekt t	tmpeksport0	.gz				
Ny Skipsdata						
Pause	0 ch	ecksum errors	Blue Tooth	Show only faulty messages	Log data flow	Abort

Results

You can see the trawl position on Olex.

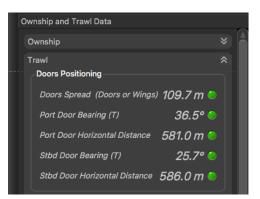
*i***Tip:** If you need to test the NMEA connection but the sensors are not in water: configure the same output settings in Scala Replay/ScalaReplay2, then replay SDS files containing positioning data.

Displaying Trawl Positioning from Scala/Scala2 on MaxSea Version 12

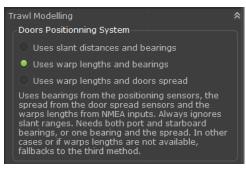
You can export trawl positioning data coming from Scala/Scala2 to MaxSea v12 application.

Before you begin

- You must have a GPS and door positioning sensors.
- Compatible MaxSea version: MaxSea version 12.
- Compatible Scala version: 01.06.06 (only PTSAL sentence) / 01.06.14 and after.
- Compatible Scala2 version: 02.00.02 and after.


About this task

You can export trawl positioning data from Scala/Scala2 to MaxSea with PTSAL or IIGLL sentences. With PTSAL sentence you can display the trawl on MaxSea from the positions of trawl wings and center between both doors. With IIGLL you can display the trawl only from the position of the center between both doors. You cannot display a 3D view of the trawl when using IIGLL sentence. To use PTSAL sentence, you need a good stability of heading values. If heading values are unstable, the trawl displayed in MaxSea will have erratic movements. If this is your case, use IIGLL instead, as it is more stable for trawl positioning.


Note: Scala 01.06.06 Scala v.01.06.06 can only emit PTSAL sentence.

Procedure

1. Scala Open the control panels and in **Ownship and Trawl Data** > **Trawl** check that you receive **Door Positioning** data.

2. Scala In Data Processing > Trawl Modelling > Door Positioning System, select Uses slant distances and bearings if using a Slant Range sensor or Uses warp lengths and bearings if using a Spread sensor.

3. Scala2 Open the control panels and in trawl data, click **Doors Positioning**. Check that you receive door positioning data.

Single Trawl	
Trawl Modeling	
Manual Estimation	
Doors Positioning	
Doors Spread	128.9 m 🔻
Port Door Slant Distance	797.1 m 🔍
Port Door Horizontal Distance	784.6 m 🔍
Port Door Bearing (T)	210.5° 🔍
Stbd Door Slant Distance	802.3 m 🔍
Stbd Door Horizontal Distance	789.1 m 🎱
Stbd Door Bearing (T)	201.1° 🍮

Note: If you receive neither warp lengths nor slant distances, you can select **Estimate** horizontal distance from depths in **Trawl Modeling** > **Doors Positioning System**. You will get an estimation of the horizontal distance between the door sensors and the boat calculated from the depth of the sensors.

- **4.** To configure the export of trawl positioning data:
 - a) Click **Menu** ≡ > **Settings**.
 - b) Under the NMEA Outputs tab, click Add.

- c) In **Port Settings**, depending on your installation select **Serial port** or **UDP port** and enter a port. If using a serial port, enter a baud rate of 19200 for PTSAL and 4800 for IIGLL to correspond with baud rates in MaxSea.
- d) In Data to Emit, select Emit only selected data types and deselect all the items.
- e) Select Emit trawl positioning sentence and choose between **\$PTSAL** or **\$IIGLL**.

- **5.** To display the trawl when using PTSAL sentence, make sure that MaxSea receives heading data from **Boat** instruments. You can check from **Data Display**.
- 6. To configure **Trawl** parameters:
 - a) In Data Input/Output Settings, click the Trawl tab.
 - b) Click Add instrument.

	Active	COM Port	Norm	
1	Add Instrument	_		
e i		8	Remove Instrument	Advanced settings

- c) Put the same port as configured on Scala/Scala2.
- d) Click Next.
- e) If using PTSAL sentence select **PACHA/GEONET** and if using IIGLL select **Simrad ITI**.
- **f)** You cannot change the baud rate from MaxSea. If using a serial port, make sure you put the same baud rate in Scala/Scala2.

	- Select Norm	Port Se	attings	Data to Emit
	Norm	Type:	Serial port 🔘 UD	P port 🔘 TCP Serv
N FOI	PACHA/GEONET	Port:	cu.usbserial-FT0IK	usu 🗸
		Baud:	19200	
	Baud Rate	Data Bits:	8	
1	19200 👻	Parity:	None	
		Stop Bits:	1	, in the second s
~		Flow Control:	None	•

g) Click Finish.

7. If using PTSAL sentence, click Boat > Advanced Settings and in System, select PACHA.

System		Preferences	o	gu
PACHA		Inter-sensor dist:	0	Meters
C GEONET		Sound celerity:	1250	M/S
DAP Number				
C 1 DAP Sensor		Offsets:		
2 DAPS Sensors		X (>0 forward):	0	Meters
Mode		Y (>0 Starboard):	Select	Meters
 Synchronization = 0 Synchronization = 1 		Z (>0 Down):		Meters
Commands		Pitch:	<u></u>	
Reset	Stop	Bearing:	·	
	Start	Roll:	0	•

- 8. Click the **Data Display** tab and check that you see:
 - For PTSAL sentence, 3 trawl positions with latitude and longitude data.

Boat / UDP 5000 Boat / Data Calculator Trawl/Trawl Trawl/DAP 1 Trawl/DAP 2 Latitude: 6314.9383 SOG: 3.80 Latitude: 6315.0040 Latitude: 0.0000 Latitude: 6315.0356 Longitude: -2002.6454 COG: 281 Longitude: -2001.6220 Longitude: 0.0000 Longitude: -2001.6342 SOG: 4.00 SOG: 4.08 SOG: N/A SOG: 4.14 COG: 281 COG: 296 COG: N/A COG: 295 Longitude: -2001.6320 HDG: 281 Depth: N/A Depth: N/A Depth: N/A BST: N/A SST: N/A BST: N/A BST: N/A BST: N/A BST: N/A SST: N/A Open1: N/A Open1: N/A Dist1: N/A CHECKSUM OK Dist1: N/A Ortho: N/A Ortho: N/A
Overflow: N/AOverflow: N/AOverflow: N/ATrawl Type: 4Trawl Type: N/ATrawl Type: N/ARel Brg: N/ARel Brg: 0.26Rel Brg: 0.40Ob Dist: 893.43Ob Dist: 894.22Ob Dist: 892.64Immers: N/AImmers: 233.10Immers: 239.90Hor Dist: N/AHor Dist: 863.30Hor Dist: 859.80Attude: N/AAttude: N/AAttude: N/ARaising: 0.26Raising: 0.27Wire Length: 894.22Wire Length: 892.64

• For IIGLL sentence, 1 trawl position with latitude and longitude data.

Boat Radar & A.I.S. Trawl Dredge Pre	ferences Check Data Data Display	
Boat / UDP 5000 Boat / Data Calculator Latitude: 6318.4038 SOG: 3.98 Longtude: -1948.0260 COG: 224 SOG: 3.50 COG: 227 HDG: 227 Depth: 340.95 SST: N/A CHECKSUM OK	Trawl/Trawl Laftude: 6318.7840 Longtude: -1947.4300 SOG: 3.49 COG: 217 Depth: N/A BST: N/A Open1: N/A Open2: N/A T Fil: N/A T Fil: N/A T Fil: N/A T Fil: N/A Rell Brg: N/A Ob Dist: N/A Bell Brg: N/A Ob Dist: N/A Rell Brg: N/A Ob Dist: N/A Rating: N/A Mittude: N/A Attude: N/A Attude: N/A Shoal Dist: N/A Shoal Dipth: N/A	

- **9.** To check incoming data:
 - a) Click the **Check Data** tab.
 - **b)** Select the port.
 - c) Click **Display**.

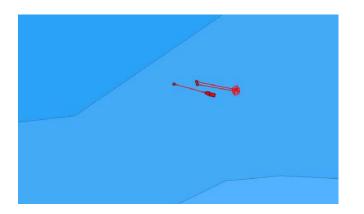
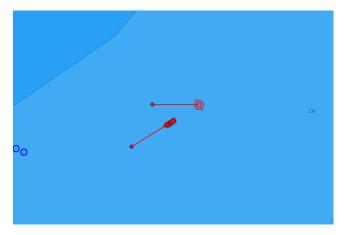

Data Input/Output Settings
Boat Radar & A.I.S. Trawl Dredge Preferences Check Data Data Display
COM Port UDP 5000 Display
\$GPZDA.124543.03.02.2016.00.00*49 \$PLCJ.50.52.3C.73.5C.*15 \$GPHDT 259.3.1*38
SUMISYN,896.7m, 0.0m, 0.0m,893.8m,4.3t,0.0t,0.0t,4.3t,-5.5r,-4.0r,-15.1,s,-10.9,s,0,0,1,0,0,44.4,c,31.5,p,31.5 SGPGGA,124543,6314.9285N,02002.4025,W,1,10,1.8,79,M,,M,,*66 SGPHDT 259.3 T*38
SUTHOT 127.0.R, 030.80.N, A*07 SWIWW, 177.0.R, 030.80.N, A*07 SWIWWR, 177.0.R, 030.81*68 SQFHOT 259.2 T*39
\$WIXDR.C02.0.C.,P.1.014,B.*59 \$GPHDT,259.2,T*39
SPLCJ.50.52.32.74.5C.*12 SQPHDT.259.2.T*39 SQPHDT.259.2.T*39
\$GPHDT.259.2,T*39 \$WM\$79,896.7m,0.0m,0.0m,893.8m,4.2t,0.0t,0.0t,4.1t,-5.5r,-4.0r,-15.1s,-10.9s,0.0,1.0,0.44.4c,30.3p,30.1 \$PTSAL.853.0.863.8,358.1,6.2,231.7,239.3*55
<u>SPTSAN 0.121.8., 121.8., 168</u> SGPHDT.261.3, 1733 SGPHDT.261.4, 1734
\$IIMWV, 178.0, R, 027.80, N, A*0E \$WIVWR, 178.0, R, 27.8, N,*62
OK Cancel

Figure 10: Example of incoming PTSAL sentence


Results

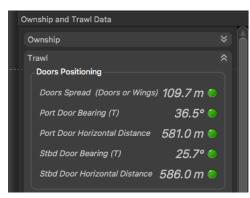
From MaxSea, you should see the trawl behind the boat.

With a PTSAL sentence, there are 3 points corresponding to the location of the 2 trawl wings and of the center between the doors. The 3 lines are the headings of the wings and doors.

With a IIGLL sentence, there is 1 point, corresponding to the center between the doors. The line corresponds to its heading.

*T*ip: If you need to test the NMEA connection but the sensors are not in water: configure the same output settings in Scala Replay/ScalaReplay2, then replay SDS files containing positioning data.

Displaying Trawl Positioning from Scala/Scala2 on MaxSea TimeZero


You can export trawl positioning data coming from Scala/Scala2 to MaxSea TimeZero application.

Before you begin

- You must have a GPS and door positioning sensors.
- Compatible MaxSea TimeZero version: TimeZero Professional v3.
- · Compatible Scala version: 01.06.06 (only PTSAL sentence) / 01.06.14 and after.
- Compatible Scala2 version: 02.00.02 and after.

Procedure

1. Scale Open the control panels and in **Ownship and Trawl Data** > **Trawl** check that you receive **Door Positioning** data.

2. Scala2 Open the control panels and in trawl data, click **Doors Positioning**. Check that you receive door positioning data.

Single Trawl	
Trawl Modeling	
Manual Estimation	
Doors Positioning	
Doors Spread	128.9 m 🔻
Port Door Slant Distance	797.1 m 🔍
Port Door Horizontal Distance	784.6 m 🍮
Port Door Bearing (T)	210.5° 🔍
Stbd Door Slant Distance	802.3 m 🍮
Stbd Door Horizontal Distance	789.1 m 🍮
Stbd Door Bearing (T)	201.1° 🌑

- **Note:** If you receive neither warp lengths nor slant distances, you can select **Estimate** horizontal distance from depths in **Trawl Modeling** > **Doors Positioning System**. You will get an estimation of the horizontal distance between the door sensors and the boat calculated from the depth of the sensors.
- **3.** To configure the export of trawl positioning data:
 - a) Click **Menu** ≡ > **Settings**.
 - b) Under the NMEA Outputs tab, click Add.

- c) Under **Port Settings**, depending on your installation select **Serial port** or **UDP port** and enter a port.
- d) Under Data to Emit, select Emit trawl positioning sentence and choose Best sentence for MaxSea TimeZero (\$PMPT).

- **4.** From TimeZero, check that you receive NMEA data from Scala/Scala2 and data from a GPS:
 - a) From TimeZero, click **TIMEZERO menu** > **Connection Wizard**.

b) In the connection wizard, select **Port Monitor**.

Connection Wizard		×
1	Welcome to the Connection Wizard.	
	Automatic ports configuration: to have TimeZero search automatically for your connections.	
1	Manual port configuration: to manually add / configure an instrument or connection.	
	O Data Output : To configure a data output to other instruments or to an auto-pilot.	
	O Man Over Board (MOB) : to add a MOB connection.	
	Port Monitor: to view and troubleshoot NMEA connection.	
	O Data source: to view and choose the source being used.	
	Clear all: to restore factory settings (erase the configuration).	
	<back next=""> Cancel</back>	Help

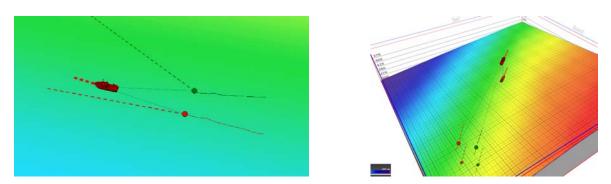
c) Select the port of the NMEA data. You should see Marport NMEA positioning data (\$PMPT).

SMPMSD.T.B0.8.BAT.33.00*9*cordb SMPMSD.T.HR.12.1MP.6.6.73*3cordb SMPMSD.T.HR.12.0PM.a.637*3cordb SMPMSD.T.B0.7.BAT.73.00*4*cordb SMPMSD.T.B0.7.0PM.a.0.78*0*cordb SMPMSD.T.B0.7.0PM.a.0.78*0*cordb SMPMSD.T.B0.7.0PM.a.0.78*0*cordb SMPMSD.T.B0.7.0PM.a.0.78*0*cordb SMPMSD.T.B0.7.0PM.a.0.78*0*cordb SMPMSD.T.B0.7.0PM.a.0.78*0*cordb SMPMSD.T.B0.7.0PM.a.0.78*0*cordb SMPMSD.T.B0.7.0PM.a.0.78*0*cordb SMPMSD.T.B0.7.0PM.a.0.78*0*cordb SMPMSD.T.B0.7.0PM.a.0.78*0*cordb SMPMSD.T.B0.7.0PM.a.0.78*0*cordb SMPMSD.T.B0.7.0PM.a.0.78*0*cordb SMPMSD.T.B0.7.0PM.a.0.78*0*cordb SMPMSD.T.B0.7.0PM.a.0.78*0*cordb SMPMSD.T.B0.7.0PM.a.0.78*0*cordb SMPMSD.T.B0.7.0PM.a.0.78*0*cordb SMPMSD.T.B0.7.0PM.a.0.78*0*cordb SMPMSD.T.B0.2.0PM.A.0.07*0*cordb SMPMSD.T.B0.2.0PM.A.007*0*cordb SMPMSD.T.B0.2.0PM.A.007*0*cordb SMPMSD.T.B0.2.18*3.4.0M.043222*69*cordb		: COM 3	Baud Rate :	38 400 baud $ \sim$	Advanced	
	SMPMSD.T.HR.12.TMP, SMPMSD.T.HR.12.OPNJ SMPMSD.T.BO.7.BAT.7. SMPMSD.T.BO.7.BAT.7. SMPMSD.T.BO.8.OPN, SMPMSD.T.BO.7.OPN, SMPMSD.T.BO.7.OPN, SMPMSD.T.BO.7.OPN, SMPMSD.T.BO.7.OPN, SMPMSD.T.BO.7.OPN, SMPMSD.T.BO.7.OPN, SMPMTW.7.26.C'0d corp.	c. 6. 73° 3c con-df> m.4.03° 2k con-df> 3.00° 54 con-df> 1.1.31° 07 con-df> m.4.03° 2k con-df> 0.78° 04 con-df> 0.78° 04 con-df> 0.78° 04 con-df> 0.78° 04 con-df> df>				î

d) Select the port of the GPS. You should see incoming data.

Connection Wizard		-		2		25	22	×
Select the port to monitor	COM 4	~	Baud Rate :	38 400 baud >	Advanced	1		
WIVWR, 148.0, R. 15.8, N. GPHDT, 273, 2, T'31 corp. SIGDBS, 37, 67, 114.8, M. SIGDBS, 37, 67, 114.8, M. SIGDBS, 126, 114.8, M. SIGDBS, 127, 127, 127, 127, 128, 128, 128, 128, 128, 128, 128, 128	d) 62.75°38cm-d> 188.54cm-d> 60.55°36cm-d> d) do 0.05.7°37m4.51.0 4cm-d> 0.00.3797m4.51.0 4cm-d> 4cm	i.12.1.6,75.M.,M.,*6F	തർം					^
Pause								
Clear Log Sa	ve Log File size	e : 11.8 Kb						

- **5.** To add these data to TimeZero chart:
 - a) From TimeZero, click **TIMEZERO menu** > **Connection Wizard**.
 - b) Select Automatic ports configuration.


Connection Wizard		×
	Welcome to the Connection Wizard.	
	Automatic ports configuration: to have TimeZero search automatically for your connections.	
λ	Manual port configuration: to manually add / configure an instrument or connection.	
	O Data Output : To configure a data output to other instruments or to an auto-pilot.	
	O Man Over Board (MOB) : to add a MOB connection.	
	O Port Monitor: to view and troubleshoot NMEA connection.	
	O Data source: to view and choose the source being used.	
	Orear all: to restore factory settings (erase the configuration).	
	<back next=""> Cancel</back>	Help

The wizard analyzes the system and search for incoming data. When the search is complete, it shows a list of ports where devices are connected and data they transmit.

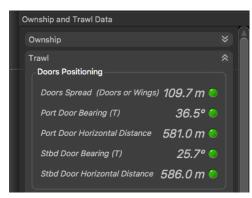
- c) Check if the ports and data are correct. You should at least have a GPS device and Marport NMEA data.
- d) From **Nickname** enter a name for the ports to easily recognize them.

nput Ports :			Data :
Port Name	Nickname		Position Date/Time
COM 3	Marport	Delete	
			Magnetic/Variation Depth SST (Detected) STW Set & Daft (Direction/Speed) True wind (Angle / Speed) True wind (Direction) Apparent wind (Angle / Speed) Wing Amospheric Pressure Artitude (Pitch / Roll / Heaving) ARPA AIS DSC External Cursor Pyokuseisha Buoy MARPORT (Detected)

- e) Follow the instructions from the wizard.
- **6.** From TimeZero chart, check that you see the trawl behind the vessel.

Trouble: Scala If you see the trawl on the chart view whereas it is not in water and you do not see it on TimeZero: from Scala, open the control panels and go to **Data Estimation**. Check that **Stdbd warp length** and **Port warp length** are **not** selected.

Displaying Trawl Positioning from Scala/Scala2 on SeapiX


You can export trawl positioning data coming from Scala/Scala2 to SeapiX application.

Before you begin

- You must have a GPS and door positioning sensors.
- Documented SeapiX version: version 8.6.0
- Compatible Scala version: 01.06.06 (only PTSAL sentence) / 01.06.14 and after.
- Compatible Scala2 version: 02.00.02 and after.

Procedure

1. Scale Open the control panels and in **Ownship and Trawl Data** > **Trawl** check that you receive **Door Positioning** data.

2. Scala2 Open the control panels and in trawl data, click **Doors Positioning**. Check that you receive door positioning data.

Single Trawl	
Trawl Modeling	
Manual Estimation	
Doors Positioning	
Doors Spread	128.9 m 🔻
Port Door Slant Distance	797.1 m 🎱
Port Door Horizontal Distance	784.6 m 🔍
Port Door Bearing (T)	210.5° 🔍
Stbd Door Slant Distance	802.3 m 🍮
Stbd Door Horizontal Distance	789.1 m 🎱
Stbd Door Bearing (T)	201.1° 🍮

- **Note:** If you receive neither warp lengths nor slant distances, you can select **Estimate** horizontal distance from depths in **Trawl Modeling** > **Doors Positioning System**. You will get an estimation of the horizontal distance between the door sensors and the boat calculated from the depth of the sensors.
- **3.** To configure the export of trawl positioning data:
 - a) Click **Menu** ≡ > **Settings**.
 - b) Under the NMEA Outputs tab, click Add.

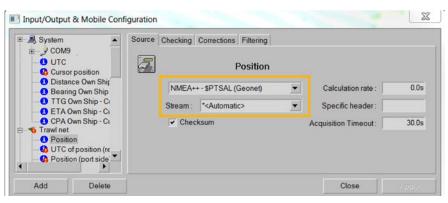
- c) In **Port Settings**, depending on your installation select **Serial port**, **UDP port** or **TCP Server** and configure the port.
- d) In Data to Emit, select Emit trawl positioning sentence and select Best sentence for Seapix (\$PTSAL).

• • •	Add NME	A Output	Emit trawl positioning sentence
Port Se	ort Settings Data to Emit		Best sentence for Seapix (\$PTSAL)
Туре:	Serial port	UDP port O TCP Server	
Port:	cu.usbserial-l	FTUGI02J 🗸	
Baud:	4800	-	
Data Bits:	8	-	
Parity:	None	-	
Stop Bits:	1	_	
Flow Control:	None	-	
Apply		Cancel OK	

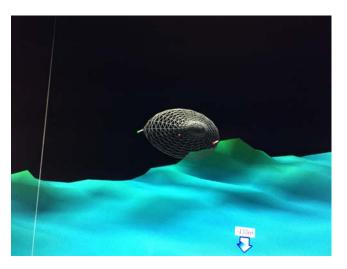
- **4.** From SeapiX, add the communication port used to receive NMEA from Scala/Scala2:
 - a) In the menu bar, click System > Settings > I/O and Mobiles > Input/Output & Mobile Configuration.
 - **b)** In the left panel, right-click **System** and select **Add** > **Stream**, then choose a port between serial (COM), UDP (NET) or TCP.

Input/Output & Mobile Configuration	٢
System System Network Devenders AlS System COMI Information NET I(R) Core(TM) i7-3840QM CPU @ 2.80GHz Outc Mobile NET I(R) Core(TM) i7-3840QM CPU @ 2.80GHz Outc Gursor position Fleet TCP Outc Fleet Flue ndows 7 Service Pack 1. 32-bit Outcom Bearing Own Ship DirectX version : 9 (4.09.00.0904) Physical memory : 4096 MB Outcom CTG Own Ship - Ct Number of serial ports : 1 1 Add Delete Close Agely	

c) To configure the port, click its name in the left panel. Make sure the baud rate is the same as in Scala/Scala2.


System	Serial Port	Input Parameters	Spying	
	S	COM9	Comment:	
OTU C			Baud Rate :	4800 💌
Cursor position Our Distance Own Ship			Parity :	No parity 💌
- 🚱 Bearing Own Ship - 🚱 TTG Own Ship - Cı			Data Bits :	8 💌
- CI CPA Own Ship - CI			Stop Bits :	1
Trawl net				

Once you have configured the input from Scala/Scala2 (next step), you can click the magnifying glass to see incoming data.


- 5. Configure the input of positioning NMEA sentences received from Scala/Scala2:
 - a) In the menu bar, click System > Settings > I/O and Mobiles > Input/Output & Mobile Configuration.
 - b) In the left panel, click **Trawl net** > **Position**.

System COM9	Source	Checking	Corrections	Filtering		
UTC Cursor position	5			Position		
Distance Own Shir Bearing Own Ship		Softwar	e		•	
TTG Own Ship - Ci						
CPA Own Ship - Ci						
- 3 Position						
OIC of position (re Position (port side						

c) Under the **Source** tab, select **NMEA++-\$PTSAL (Geonet)**.

- d) From **Stream**, select the port connected to Scala/Scala2 or select **Automatic** to automatically find the port.
- e) You do not need to change the other settings.
- f) Under the **Checking** tab, you can check if the system understands the sentences it receives.
- 6. When the trawl is in water, check on SeapiX chart view that you see the trawl with markers. Port door is in red and starboard in green.

*i***Tip:** If you need to test the NMEA connection but the sensors are not in water: configure the same output settings in Scala Replay/ScalaReplay2, then replay SDS files containing positioning data.

Displaying Bathymetric Data from GEBCO Database

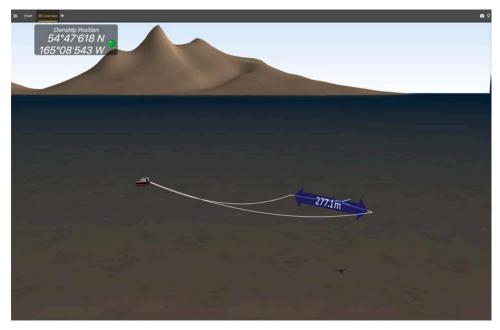
You can display bathymetric data coming from GEBCO database on the 3D overview of the vessel.

Before you begin

- You must have Scala Full dongle.
- You need to have incoming data from a GPS (position, heading)
- You need to have specific GEBCO files. Ask your local Marport office to get them.
- GEBCO files use approximately 5.7 GB of space, make sure you have enough space on your computer.

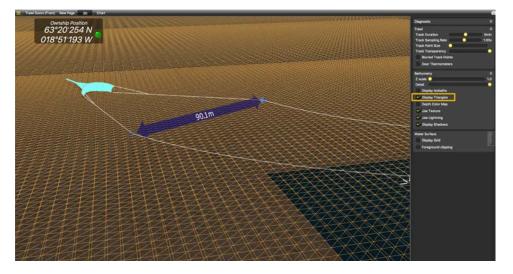
Procedure

- **1.** You need to save GEBCO files according to a specific folder structure:
 - a) Create a folder named **Databases** anywhere on the computer.
 - **b**) Create the following folder structure inside **Databases** and save the GEBCO files in the **Gebco** folder.


Important: Make sure you write exactly the same names of folders (letter case, spaces).

2. From Scala/Scala2, click **Menu** = > **Expert Mode** and enter the password copernic.

- **3.** Click **Menu ≡** > Settings.
- **4.** Go to the **Advanced** tab and select the folder **Databases** you created.


	•••		Scala Settir	ngs		
	Units N	MEA Outputs	Ownship	Trawl	Alarms	Advanced
	Data Histor	у				
	CDispla	ay global position	n cursor on p	lots and e	chograms	
	Data Recor	der				
	Auton	natically clean re	cords older t	han 1	▼ mo	nth(s)
	Keep at le	east 5 🔻	Gb of free	space on	disk	
	Store Rec	cordings in: Doc	uments/Marr	oort/SDSR	ecord	
	Bathymetry	6				
	GEBCO F	older: Jsers/ma	acjulie/Docum	nents/Data	abases E	Browse
	User Interfa	sce				
	Theme:		Scala V2			•
	Page Bac	kgroud:	Dark			•
	Control P	anels Position:	Right			•
Units Ownship Trawl Storages NMEA Outputs Alarms Advanced	Language	e:	English			•
Databases directory: umes/Useraccounts/jpri/Databases						
Page Backgroud: Default 🔻						
Language file: s/Scala.app/Contents/MacOS/scala_en.qm X						
					-	
Close					Ļ	Close
Scala			Scala2			

- **5.** Open a page with a 3D overview of the vessel.
- **6.** Scala Right-click the 3D view and select **Display Global Bathymetry**. GEBCO bathymetric data is displayed on Scala/Scala2.

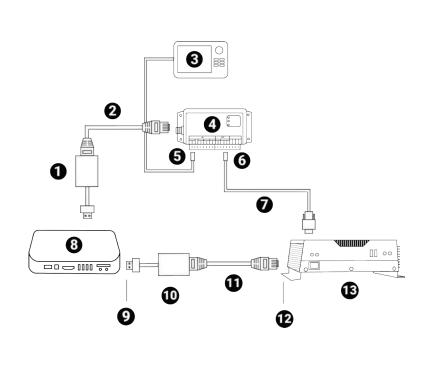
- **7. Scala** To check if the bathymetry is correctly received:
 - a) Right click the 3D and select **Display Settings**.
 - b) From the panel on the right side of the screen, from the part **Bathymetry**, select **Display Triangles**.

Triangles are displayed on the 3D.

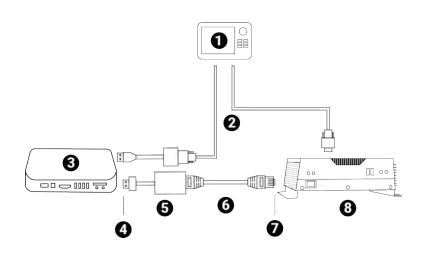
Displaying Olex Bathymetric Data on Scala

You can display bathymetric data coming from Olex on Scala 3D overview.

Before you begin


- You need to have a GPS sending data to both Scala/Scala2 and Olex. If the GPS has only one output, use a multiplexer such as ShipModul MiniPlex-3E-N2K (NMEA0183 and NMEA2000) or Miniplex-3E (NMEA0183 only) to be able to share data.
- Olex software must have the **RE** option (it exports bathymetry)

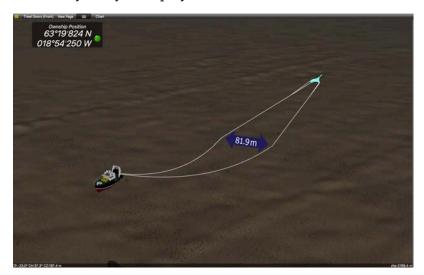
About this task


Note: If you have a M4 system with two Mac minis, connect devices to the **Mac mini i5**. Only this computer will receive the bathymetry.

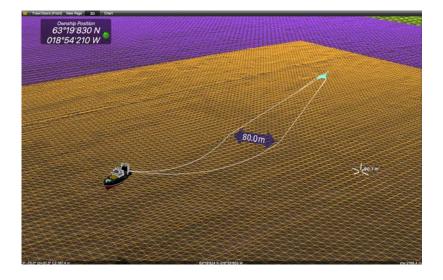
Procedure

- **1.** Connect the equipment as follows:
 - If your GPS has only 1 output, use a multiplexer:

- 1 USB or Thunderbolt Ethernet adapter
- 2 Ethernet Cable
- 3 GPS
- 4 Multiplexer
- 5 NMEA In
- 6 NMEA Out
- 7 Serial port
- 8 Computer
- **9** IP address 192.168.65.16
- **10** USB or Thunderbolt Ethernet adapter
- **11** Ethernet Cable
- **12** IP address
- 192.168.65.15
- **13** Olex machine
- If your GPS has more than one output, connect it to the computer and to Olex machine:


- 1 GPS
- **2** Serial ports
- 3 Computer
- 4 IP address 192.168.65.16
- 5 USB or Thunderbolt Ethernet adapter
- **6** Ethernet cable
- **7** IP address
- 192.168.65.15
- 8 Olex machine
- **2.** From Olex, check that it can export bathymetric data:
 - a) Click Settings.
 - b) Check that there is the **RE** option:

Settings Past trips Layers 3D	Track H	lardne	SS	Bot	ttom	Profile		
Olex 8.8 from 3/2-2016 Serial number 9092 - 824 Gb free S63 User Permit B0EE16D69A4D5C4E2B8097C43830 Experimental version+ITI+HT+AIS+DX-RE								
Ship length	0.0 meter	s <<	<	>	>>	The Ca		
Ship width	0.0 meter	s <<	<	>	>>	and the second		
From fore to GPS	0.0 meter	s <<	<	>	>>	The state of the second		
From port to GPS	0.0 meter	s <<	<	\sim	>>	ACTO		
From fore to echo sounder	0.0 meter	s <<	~	>	>>			
From port to echo sounder	0.0 meter	s <<	<	>	>>	Nº T		
Echo sounder depth	0.0 meter	s <<	<	>	>>	5 E		
Echosounder water sound speed	1500 m/s	22	~	1		1		


- **3.** Configure the IP address of the USB/Thunderbolt to Ethernet adaptor that links the computer and Olex machine:
 - a) Click **Apple menu** > **System Preferences** > **Network**.
 - **b)** Click the USB/Thunderbolt to Ethernet network.
 - c) Click the **Configure IPv4** pop-up menu, then select **Manually**.
 - d) In IP Address, enter 192.168.65.16.
 - e) In **Subnet Mask**, enter 255.255.0.
 - f) In Router, enter 192.168.65.15.

Locati	ion: Automatic	<u></u>	
Ethernet Connected \longleftrightarrow Wi-Fi Connected $夺$		Connected Thunderbolt Ethernet is currently active at has the IP address 192.168.65.16.	nd
Thundhernet	Configure IPv4:	Manually	\$
USB-Soller 2	IP Address:	192.168.65.16	
Not Configured	Subnet Mask:	255.255.255.0	
USB-Soller 3	Router:	192.168.65.15	
Bluetooth PAN	DNS Server:		
UC232R Not Configured	Search Domains:		
Not Configured			
USB-Soller 4			
- *		Advance	d

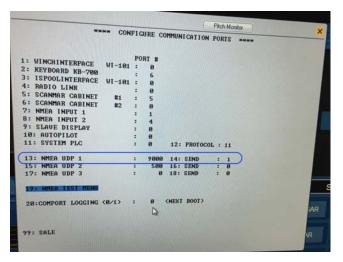
- 4. Open Scala/Scala2.
- **5.** Restart Olex machine.
- **6.** From Scala, display a 3D view of the vessel and trawl: click **Control Panels** > **Customize** and drag **3D Overview** to a page.
- **7.** Right-click the 3D view and select **Display Olex Bathymetry**. Olex bathymetry is displayed on Scala.

- **8.** To check if the bathymetry is correctly received:
 - a) Right-click the 3D view and select **Display Settings**.
 - b) In the panel on the right side of the screen, select Display Triangles. Triangles are displayed on the 3D.

Receiving Warp Lengths from Scantrol

You can output warp length data from Scantrol iSYM Trawl Control application to Scala/Scala2 software.

About this task


Note: In this procedure, data are transmitted via a UDP port but a connection via a serial port can be possible.

Procedure

 Scantrol and Marport computers must be connected together via an Ethernet wired network. Both computers must be on the same sub-network to communicate with each other: 192.168.0.XX.

For example, the network IP address can be set at **192.168.0.10** on Scantrol computer and at **192.168.0.12** on Marport computer. The subnet mask address is 255.255.255.0 for both.

2. Go to iSYM's Configure Communication Ports menu, then in 13: NMEA UDP 1 or 15: NMEA UDP
2 enter a port number, such as 9000, and set SEND to 1.

Note: The port number must be different from the one on which Scala/Scala2 sends data (if applicable).

- **3.** In Scala/Scala2, open the control panels then click **NMEA Inputs** > **Add input**.
- 4. Set a UDP connection and enter the corresponding port.

5. Scala2 Clear the Validate Checksum checkbox.

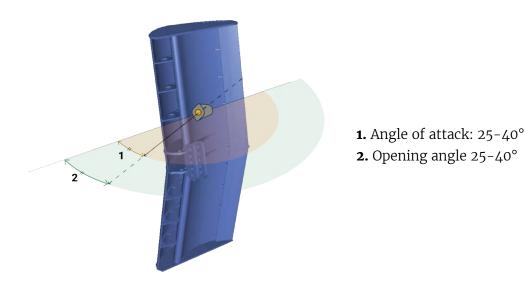
Validate checksum

Important: If you do not clear this checkbox, you will not receive the data from Scantrol.

Results

Scantrol data are displayed in Scala/Scala2.

Installation


Learn how to install door sensors on the trawl gear.

Installation Principles

Door sensors need to be installed in pockets welded on trawl doors. Carefully read these installation principles before installing sensor pockets.

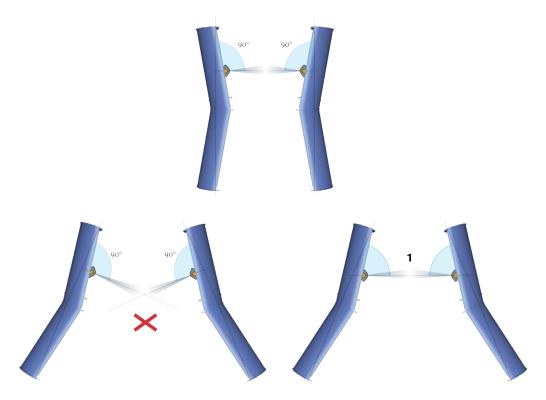
Angle of Attack

The angle of attack is the angle of the door in relation to the towing direction. This angle is important for the efficiency of the doors. It varies between trawl door models, so refer to manufacturer to know the exact angle. The angle is usually from 25° to 40°.



Opening and Elevation Angles

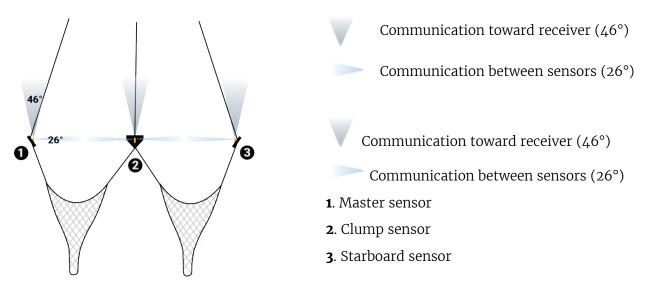
The opening and elevation angles depend on the pocket installation on the door.


The opening angle is the horizontal angle of the pocket in relation to the door. It should be between 25° and 40°. Opening angles should be in line with the angle of attack. You need to indicate the opening angle on Mosa2.

The elevation angle, or tilt angle, is the vertical angle of the pocket in relation to the door. It should be between 15° and 20°. The sensor must point toward the vessel: adjust the elevation angle based on the operational depth of the door during fishing operations.

Roll Angles

Roll angle of the sensors depends on the tilt of the doors when fishing. If doors are straight during fishing, you can apply a roll angle of 90°. If doors are tilted inward during fishing, slightly roll the pocket so that lines of communication between the sensors stay aligned. If not, you will have sporadic spread readings.



1. Adapt roll angles of pockets according to the tilt of the doors.

Communication

Spread sensors communicate with each other and with the receiver. Lines of communication between them and toward the receiver must be unobstructed.

The beamwidth toward the receiver (uplink ping) is 46° and beamwidth toward the other sensors (down ping) is 26°. This beamwidth is thinner: this is why it is important to keep sensors aligned.

Slant Range sensors do not communicate with each other, so only lines of communication toward the hydrophones must be unobstructed.

Installing Sensor Pockets

You need to install pockets on each trawl door to hold the door sensors.

Before you begin

- Read Installation Principles on page 105 to become familiar with installation requirements.
- You need different pockets depending on your type of door sensor:
 - Spread Sensor / Slant Range XL bottle
 - Mini Spread Sensor (stubby bottle)
 - Mini Spread Sensor (stubby bottle) with slim housing
 - Mini Slant Range (small bottle)

See Appendix C: Pocket Drawings on page 146 to know which installation you need.

About this task

Important: Make sure you install the sensor pockets in accordance with the installation principles: pockets are important for the correct functioning of the sensors. If they are misaligned or if the pocket hides the sensor signal, you will have issues receiving data.

Important: We strongly recommend to have alignment bars inside the pockets to hold the sensor in the correct position.

Important: Take care to gather as much information as possible from the trawl doors manufacturer before installation. Such as the angle of attack and towing angle.

Note: If your door model have the doors rigged "nose up" or "nose down", you need to change the angle of the door pockets so that the sensor always point toward the bottom of the ship when being towed.

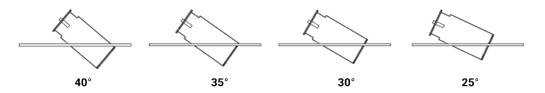
Figure 11: Nose down (left) and nose up (right)

Note: If you use the sensors for bottom trawling, install pockets on the upper part of trawl doors. Make sure the pocket's position does not influence too much the center of gravity of the door. Refer to door manufacturer for details.

Procedure

1. Use drawings of door pockets to mark the shape to be cut off: Appendix C: Pocket Drawings on page 146.

Note: Ask your local Marport sales office for scaled templates of door pockets.


2. Cut round openings in the doors.

3. When setting up the alignment bar in the sensor pocket:

Note: Master and Starboard sensors need to be oriented in a way they can communicate with each other. The alignment bar in the pocket ensures correct positioning. The housing of the sensors have a slot so they can be inserted in the alignment bar.

- The alignment bar must be downwards on the port door (Master sensor).
- It must be upwards on the starboard door, or clump (Slave or Clump sensor).
- **4.** Place the sensor pocket with the bottom portion sticking out of back side of the door. Adjust accordingly to the elevation angle and angle of attack you need (see Pocket Angle of Attack on page 147). Picture below shows angles of attack seen from above the door.

- **5.** You can trace a line with a marker around the pocket at the point it enters the door to remember the correct position.
- 6. Spread sensors: Check if angles are correct:
 - a) Weld only a few points on two sides of the pocket to hold it on the door.
 - b) Open Mosa2 software.
 - c) Activate and deactivate the water-switch to connect the sensor to Mosa2 via a wireless signal.

d) From Mosa2, click the tab Pitch and Roll.

Information Spread Depth Temperature Pitch and Roll Channel Chirp General Configuration

e) Click Pitch and Roll Calibration then click Auto Calibrate. Pitch and roll offset values change according to the position of the sensor on the door. Pitch should be between 15 and 20°, roll should be ±5°. Roll may need to be higher depending on the door model and operation: adjust accordingly.

Pitch and Roll C Put the door in	alibration a vertical position and click the a	uto calibrate button. Valid	l values are +/-30 degrees.	
Pitch Offset:	0.00*		Auto Calibrate	Manual Manual
Roll Offset:	0.00°		Reset	Save

- f) If you do not have Mosa2 software, manually check the angles.
- **7.** If values are not correct, move the pocket, then check again.
- **8.** If values are correct, permanently weld the pocket to the door.
- **9.** We recommend to use a protective cage made of metal bars around pockets to protect sensors, like the examples below.

Note: Make sure there is sufficient space between the protective cage and the sensor pocket, so that if the cage becomes bent, you can still remove the sensor.

Installing Spread Sensors

You need to install Spread sensors in pockets welded to the trawl doors.

Before you begin

To install Spread sensors on the doors, you need to have specifically designed sensor pockets welded to the trawl doors. See Installing Sensor Pockets on page 108.

Single Trawl

Before you begin

For a single trawl you need:

- A Master Spread sensor
- A Starboard Spread sensor

Procedure

- **1.** Remove the screw holding the pocket cover.
- **2.** Install the Master sensor (red marker) on the port door and the Starboard sensor (green marker) on the starboard door.
- **3.** The top of the transducer (side with marker on housing) must be oriented toward the vessel and the side of the transducer with the circle/A must be oriented toward the opposite door.

Note: Pockets can have an alignment bar that ensure correct positioning of the sensors. Simply slide the sensor into the alignment bar.

- **4.** Attach the safety line from the sensor to the pocket and fasten the pocket's screw.
- **5.** Make sure that both sensor transducers are aligned with each other during towing. This way, they can communicate with each other.
- **6.** Make sure there is nothing in front of the sensors that would block their signal toward the vessel.

Twin Trawls

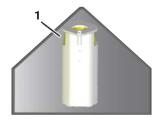
Before you begin

For twin trawls you need:

- A Master Spread sensor
- A Starboard Spread sensor

• A Clump sensor

Procedure


- **1.** Remove the screw holding the pocket cover.
- **2.** Install the Master sensor (red marker) on the port door and the Starboard sensor (green marker) on the starboard door.
- 3. Install the Clump sensor (black marker) on the clump.
- **4.** The top of the transducer (side with marker on housing) must be oriented toward the vessel. For Master and Starboard sensors, the side of the transducer with the circle/A must be oriented toward the opposite door. For a Clump sensor, it must be oriented toward the Master sensor on the port door.
- 5. Attach the safety line from the sensor to the pocket and fasten the pocket's screw.
- **6.** Make sure that all three sensors are correctly aligned, to be able to communicate with each other.
- **7.** Make sure there is nothing in front of the sensors that would block their signal toward the vessel.

Port

Starboard

Clump

1. Down sounder (marked with a circle)

Installing Slant Range Sensors

You need to install Slant Range sensors in pockets welded to the trawl doors.

Before you begin

To install Slant Range sensors on the doors, you need to have specifically designed sensor pockets welded to the trawl doors. See Installing Sensor Pockets on page 108.

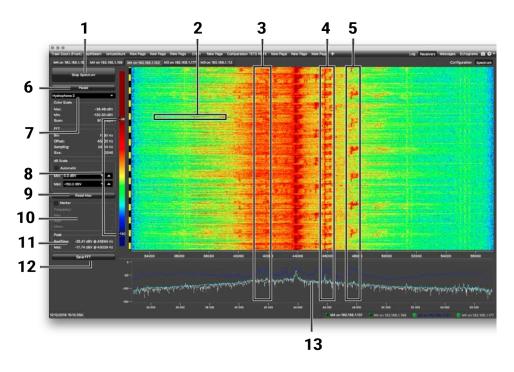
Procedure

- **1.** Remove the screw holding the pocket cover.
- **2.** Install Slant Range sensors inside each door pocket: the top of the transducer (side with marker on housing) must be oriented toward the vessel.

Port Starboard

- 3. Attach the safety line from the sensor to the pocket and fasten the pocket's screw.
- **4.** Make sure there is nothing in front of the sensors that would block their signal toward the vessel.

Maintenance and Troubleshooting


Read this section for troubleshooting and maintenance information.

Interference Check

You can check if there is noise interfering with the reception of signals.

Scala Spectrum Analyzer Display

The following picture explains the main parts of the spectrum analyzer page on Scala/Scala2.

- 1 Start/Stop spectrum analyzer
- 2 Noise interference
- **3** Pulses of the sensors (PRP)
- **4** Narrow band/HDTE signals
- **5** Door sounder signals
- **6** Pause spectrum analyzer
- 7 Select hydrophone
- 8 Drag to adjust color scale
- **9** Reset the Max line.

- **10 Marker**: display frequency and levels of noise (dB) at the mouse pointer location on the graph.
- 11 Peak:
 - **RealTime**: latest highest level of noise recorded.
 - **Max**: highest level of noise recorded since the beginning of the spectrum.
- 12 Export recorded max, mean and real time noise levels in a txt file.
- **13** . Dark blue line: maximum signal level
 - Cyan line: average signal level
 - White line: last received signal level

Scala Checking Noise Interference

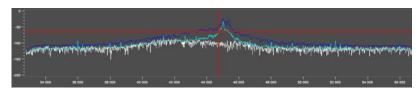
You can use the spectrum analyzer to check the noise level of the hydrophones and check for interference.

About this task

See Spectrum Analyzer Display on page 114 for details about the spectrum analyzer display.

Procedure

- 1. Click **Menu** ≡ > **Expert Mode** and enter the password copernic.
- 2. Again in the menu, click **Receivers**.
- **3.** From the top right corner of the screen, click **Spectrum**.


4. Select the hydrophone you want to test. Only the hydrophones that are switched on are displayed. Select refresh to update the list.

5. From the top left corner of the screen, click Start Spectrum.

The graph at the bottom of the page shows three levels of noise in dBV:

- 1. RealTime (white): level of noise recorded in real time.
- 2. Mean (cyan): mean recorded level of noise. It is useful to assess the noise floor.
- **3. Max** (dark blue): shows the latest highest level of noise recorded. It is useful to see on which frequencies are the sensors.

The acceptable average level of noise depends on the conditions (distance from the sensor to the hydrophone, fishing method, type of hydrophone). You can have better performance with the following levels:

- Active wideband hydrophone with high/low gain: below -100 dBV
- Active narrowband: NC-1-04 below -80 dBV / NC-1-07 below -100 dBv
- Passive hydrophone: below -110 dBV

6. To see the maximum, mean and real time measures of noise level at a specific frequency, select **Marker** on the left side of the screen and move the mouse over the graph.

Res	et Max
Varker 🚽	
Frequency:	43009.21 Hz
Max:	-65.43 dB
Real:	-99.06 dB
Mean:	-91.35 dB

Frequency and levels of noise (dB) at the mouse pointer location are displayed under Marker.

- 7. Under **Peak**, you can check:
 - **RealTime**: the latest highest level of noise recorded.
 - **Max.**: the highest level of noise recorded since the beginning of the spectrum.
- **8.** Check that there is more than 12dBV between the maximum noise level (dark blue line) and the average noise level (light blue line) on the peak of sensor frequencies.
- **9.** If you changed the configuration of the hydrophone or sensors, click **Reset Max** to reset the dark blue line showing the maximum level of noise.
- **10.** To save data recorded by the spectrum in a *.txt file, click **Save FFT**.

The FFT file lists for the entire bandwidth used by the hydrophone (frequencies are in Hz) the maximum and mean levels of noise since the FFT export has started and the last real time level of noise before the export (dBV).

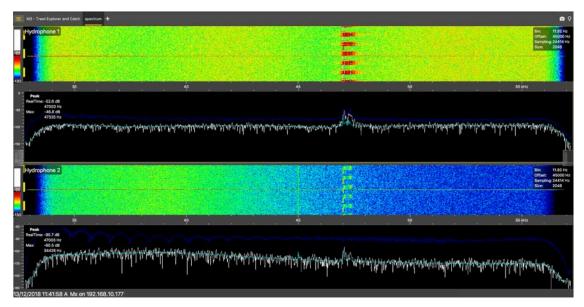
FFT level fo	r Hydropho	one 1 of Receiv	er 192.168.1.153
Freq	Max	RealTime	Mean
32793	-129.07	-136.64	-138.50
32804	-129.31	-138.41	-139.65
32816	-128.72	-142.89	-139.02
32828	-128.09	-147.78	-139.86
32840	-127.95	-143.07	-140.06

11. When you have enough data, click **Stop Spectrum**.

Scala2 Checking Noise Interference

Use the spectrum analyzer to check the noise level of the hydrophones and check for interference.

Procedure

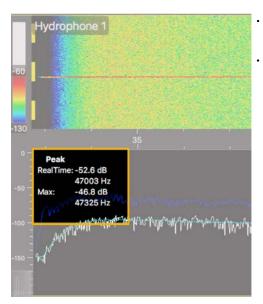

- **1.** Click Add **+** to create a new page on which you will add the spectrum analyzer(s).
- 2. Right-click the IP address of the receiver in the status bar and click **Start Spectrum**.

	Configure Receiver
	Start Spectrum
1	Record Wave file
M6 on 19	Save Receiver Configuration

- **3.** Open the control panels and go to the **Mx** panel.
- **4.** Go to **Hydrophone** data, then drag and drop **Spectrum** data to a page. These data appear only when the spectrum has been started.

Hydrophone 1	
Spectrum	
Hydrophone 2	
Spectrum	

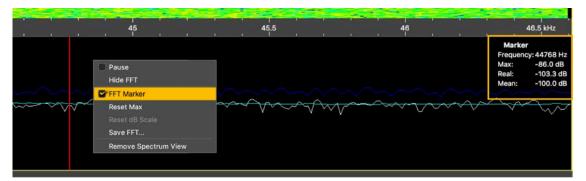
5. The spectrum analyzer is displayed. You can display up to 6 spectrum analyzers at the same time. Below is an example of a page with two spectrum analyzers.



The FFT plot shows three levels of noise in dBV:

- 1. RealTime (white): level of noise recorded in real time.
- **2. Mean** (cyan): mean recorded level of noise. It is useful to assess the noise floor.
- **3. Max** (dark blue): shows the latest highest level of noise recorded. It is useful to see on which frequencies are the sensors.

The acceptable average level of noise depends on the conditions (distance from the sensor to the hydrophone, fishing method, type of hydrophone). You can have better performance with the following levels:


- Active wideband hydrophone with high/low gain: below -100 dBV
- Active narrowband: NC-1-04 below -80 dBV / NC-1-07 below -100 dBv
- Passive hydrophone: below -110 dBV
- 6. Scroll on the frequency or dBV scales to zoom in and out.
- 7. Under **Peak**, you can check:

- **RealTime**: the latest highest level of noise (dBV) recorded and its frequency.
- **Max**: the highest level of noise recorded since the beginning of the spectrum and its frequency.

- **8.** Check that there is more than 12 dBV between the maximum noise level (dark blue line) and the average noise level (cyan line) on the peak of sensor frequencies.
- **9.** If you changed the configuration of the hydrophone or sensors, right-click the graph and click **Reset Max** to reset the dark blue line showing the maximum level of noise.
- **10.** To check the maximum, mean and real time measures of noise level at specific frequencies:
 - a) Right-click the FFT plot and click **FFT Marker**.
 - **b)** Click and drag the marker at a specific point.

Frequency and levels of noise at the marker position are displayed on the right side of the graph.

- **11.** Right-click the spectrum and click **Pause** if needed.
- To save data recorded by the spectrum in a *.txt file, right-click the FFT plot and click Save FFT.

The FFT file lists for the entire bandwidth used by the hydrophone (frequencies are in Hz) the maximum and mean levels of noise since the FFT export has started and the last real time level of noise before the export (dBV).

FFT level for Hydrophone 1 of Receiver 192.168.1.153			
Freq	Max	RealTime	Mean
32793	-129.07	-136.64	-138.50
32804	-129.31	-138.41	-139.65
32816	-128.72	-142.89	-139.02
32828	-128.09	-147.78	-139.86
32840	-127.95	-143.07	-140.06

13. Right-click the spectrum analyzer and click Hide FFT to hide the FFT plot.

14. Right-click the IP address of the receiver in the status bar and click **Stop Spectrum**.

Charging the Sensor

Charge the sensor at any battery level with either Marport Dock charger, Basic Sensor Charger or Medusa II Multi-charger.

About this task

The sensor uses lithium-ion batteries. Charge them only with Marport's chargers.

Warning: In case of water ingress in the product, do not charge it: battery may vent or rupture, causing product or physical damage.

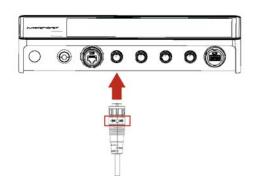
Important: For Basic/Medusa chargers and Dock products with serial number before DOC2107XXX: Do not leave the sensors connected on a charger that is switched off. If the charger is not connected to the mains voltage, the sensor switches on and this will drain the battery.

Note: Avoid full discharges and charge the battery whenever possible, at any battery level. Lithium-ion batteries do not have a charge memory, so they do not need full discharge cvcles.

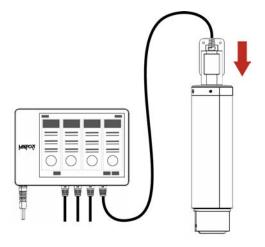
Procedure

1. Before charging the sensor: wash with fresh water and dry the sensor. This prevent corrosion of the charging pins.

Note: Check that the charging pins are not damaged. If they are, contact you local Marport dealer for replacement. Below is an example of shoulder bolts damaged because of insufficient maintenance.



- 2. Place the sensor and charger in a dry room like the deck or bridge. The optimal temperature while charging is between 10 and 25 °C.
- **3.** Place the sensor away from any installing material (e.g. wet ropes) and fix the sensor with brackets to keep it stable while charging.
- **4.** Allow good air circulation around the charger for cooling.
- **5.** Connect the 3-pin charging connector to the sensor shoulder bolts.


6. You can apply a small film of electrical contact grease lubricant on pins.

Tip: To maintain the electrical pins, polish them with fine sandpaper.

- 7. Plug in the charger to a 115-230 Vac 50-60 Hz socket.
- **8.** To charge with a Dock:
 - a) Make sure the Dock is connected to a power supply and turned on.
 - **b**) Connect the charger plug to one of the 4 charging ports.

c) Connect the 3-pin charging connector to the sensor charging pins.

The Dock screen and Virtual Charger Room display the state of charge of the sensor.

- **9.** To charge with a Basic/Medusa Charger:
 - a) If you have the Medusa multi-charger, turn the power switch to the **ON** position. The power switch lights on. If not, check the AC power cord connection.
 - b) Connect the 3-pin charging connector to the sensor shoulder bolts.
 - c) Look at the LED(s) on the charger box to know the charge status. For the multi-charger, there is a LED for each sensor charging cable. The charge status are:
 - Green LED: > 90 %
 - • Orange LED: from 70 % to 90 %
 - • Red LED: < 70 %

Note: If the sensor is in configuration mode, it will begin to charge after 10 minutes. As long as it is in configuration mode, the charger's LED remains red, whatever the charge level.

10. Wait for the battery to charge: standard charging cycle takes 8 to 12 hours. A fast charge configuration allows a 70 % charge in 1 hour and full charge in 4 hours.

Results

Once charged, the operational life time can be up to approximately 16 days for a Spread Sensor (8 days for a mini Spread Sensor) and 76 hours for a Slant Range, 38 hours for a mini Slant Range.

The operational life time depends especially on the uplink power of the sensor, but also on the sounding range, uplink frequency and options activated.

Cleaning the Sensor

You need to regularly clean the sensor for proper performance.

Wash the sensor with fresh water and dry it before you charge or store it.

Regularly check that the sensor is clean. If not:

- Remove any marine life with a piece of wood or screwdriver.
- Wash away mud or debris with warm water.

CAUTION: Do not use highly abrasive materials or jet wash.

CAUTION: Special care should be taken with sensors and components sensitive to mechanical shock or contamination.

Maintenance Checklist

We recommend you to follow this maintenance schedule for better performance and to avoid any trouble with the equipment.

Before use	 Check that all attachment equipment are not worn or torn. Replace when appropriate. Check that the sensor is clean. See Cleaning the Sensor on page 121 for cleaning procedures. Check the battery level 24 hours before use and recharge if necessary.
After use	Wash the sensor with fresh water.
Between uses	When the sensor is not in use, store in a dry area, without humidity, at a temperature between -10° and 70 °C (14 to 158 °F).
Not used for more than 3 months	 Do not leave the batteries at full charge or discharged for a long period of time or they will wear out. Every 6 months, put the sensor in charge for less than an hour.
Every 2 years	The sensor must be returned to an approved Marport dealer for inspection and maintenance.

If the sensor has not been not used for more than 3 months, we highly recommend to check the following points before using it:

- Make sure the sensors on the end cap are in good condition and clean.
- Connect the sensor to a charger and check the charging status.
- Switch on the sensor by shorting the center lug to the negative lug, then listen for a ping noise and check if you see the LED switched on.
- Test the sensor measures with Mosa2: depth, temperature, pitch, roll, and if applicable: spread distance, echogram, catch status, speed measures (using the EM log tester).
- If you have a test hydrophone, check the reception in the wheelhouse with Scala.

Troubleshooting

Learn how to solve common problems.

Mosa2 does not open due to error message

Mosa2 displays an error message saying it cannot be opened.

→ Your Mac security preferences do not allow you to open applications not downloaded from the App Store.

- From the upper left corner of the screen, click Apple menu > System Preferences > Security & Privacy .
- **2.** Click the lock icon and enter the password, if applicable.
- 3. At Allow apps downloaded from, select Anywhere, then close the dialog box.
- **4. macOS Sierra or later: Anywhere** option is not displayed by default. To display **Anywhere**:
 - 1. Click the magnifying glass from the top right corner of your screen and type Terminal.
 - 2. Click **Terminal** from the results.
 - 3. Enter in the terminal: sudo spctl --master-disable.
 - **4.** Press Enter.

Anywhere option is now displayed in Security & Privacy preferences.

Sensor cannot connect in wireless connection

When trying to connect to the sensor by wireless connection, the sensor appears on Mosa2 discovery area but you cannot click it OR the sensor does not appear on the discovery area.

Remember: First, always connect the sensor to a charger, then disconnect it. The sensor will reboot and this may resolve the issue.

- \rightarrow The sensor is out of the range of the wireless signal.
- Bring the sensor closer to the computer.
- For door sensors that need to be in door pockets for calibration: remove the sensor from the door, establish the connection, then put the sensor back in the door.

→ If the sensor is not detected by Mosa2, the issue might come from the short-range wireless connection of the computer.

- 1. Close Mosa2.
- 2. Click the short-range wireless symbol in the top-right corner of the menu bar * while holding the Shift (#) + ALT (#) keys on your Mac's keyboard.
- **3.** Click **Debug** > **Remove all devices**.
- 4. Open Mosa2.

→ In some cases, the computer keeps an history of some wireless devices and this interfere with the correct detection of sensors. You need to launch a script to uninstall Mosa2 and erase all wireless preferences.

- **1.** Double-click the DMG file of a Mosa2 version **02.03.00 and after**.
- 2. Right-click UninstallMosa.command and select Open With > Terminal.

3. From the terminal window, enter your computer password and press **Enter**.

Note: For security reasons, the terminal window will not display anything when you type the password.

The terminal window displays **Process completed** when the script is completed. Mosa2 is uninstalled from your computer and all wireless settings on the computer are erased.

4. Open the DMG file to install Mosa2 again.

Sensor does not connect correctly with Mosa2 when using the Configuration Cable

Remember: If the sensor does not connect correctly with Mosa2, always:

- Disconnect both USB connector and three-pin plug.
- Connect again the Configuration Cable.
- Make sure the three pins are fully inserted inside the sensor.
- → Mosa2 does not automatically open when connecting the Configuration Cable.
- Check that you see Marport Captain icon in the desktop taskbar. If you do not see it: close, then open Mosa2. The icon should appear in the taskbar.

Note: Marport Captain is a program running in the background. It allows Mosa2 automatic opening and displays shortcuts to Mosa2 and Scala applications installed on the computer. It should not be closed.

- If the problem persists, install Mosa2 again.
- → At the end of step 2 of the configuration wizard, the sensor does not respond.
- Connect the sensor to a charger and wait until it is fully charged.
- → The sensor has been disconnected from Mosa2.

- Check that the Configuration Cable is not connected to a USB hub. The Configuration Cable must be connected directly to the computer.
- If the computer goes to sleep mode, the sensor may be disconnected. Change the settings on your computer to increase the time before sleep mode.
- If the problem persists, connect the sensor to a charger and wait until it is fully charged. Then try again to connect.
- → Mosa2 displays a critical error message.
- Disconnect both USB connector and three-pin plug. Then, connect again the Configuration Cable. If the message is still displayed, it means there is an issue with the sensor's components. Contact Marport support.

Data in Scala/Scala2 is wrong

Data displayed in Scala/Scala2 is wrong.

- \rightarrow There are signal interferences.
- 1. First, check that the sensor frequencies and telegrams are the same in the sensor configuration (via Mosa2) and the receiver configuration (via Scala/Scala2 or the system web page).
- **2.** Check the frequencies of your other sensors and make sure there is enough distance between them.
- **3.** Check the noise on the spectrum (see <u>Checking Noise Interference</u> on page 115). If the frequency where the sensor is placed is too noisy, change for a less noisy frequency:
 - 1. Spread Sensor: see Configuring Spread Sensor Telegrams on page 31
 - 2. Slant Range: see Configuring Sounding Frequencies on page 38

Important: Do not forget to also change the frequency on the system web page (accessible through Scala/Scala2 receiver page).

4. You can increase the uplink power of the sensor to increase the power of the signal transmitted to the receiver: see Configuring the Uplink Power on page 41.

Chart and 3D Views Are Wrong

Tip: If the position of the trawl is wrong, open the control panels click Reset Trawl Position
in: Scala Data Processing > Trawl Modelling
/ Scala2 Single Trawl or Twin Trawl > Trawl Modeling.

Scala
Trawl Modelling
Doors Positionning System
Uses slant distances and bearings
Uses warp lengths and bearings
Uses warp lengths and doors spread
Uses bearings from the positioning sensors, the spread from the door spread sensors and the warps lengths from NMEA inputs. Always ignores slant ranges. Needs both port and starboard bearings, or one bearing and the spread. In other cases or if warps lengths are not available, fallbacks to the third method.
Reset Trawl Position
Use data from all receivers
Scala2
Single Trawl
Trawl Modelling
Doors Positionning System
Ignore bearings from sensors
Reset Trawl Position

The trawl is placed incorrectly

- → The positioning settings may be incorrect.
- **1.** From Scala/Scala2, click **Menu ≡** > **Expert Mode** .
- 2. Scala Click menu again, then Receivers.
- **3.** Scala2 Right-click the IP address of the receiver at the bottom of the page, then click **Configure Receiver**.
- 4. From the left side of the screen where the system is displayed, click Positioning.

5. Check that the settings are correctly completed. See Configuring the Positioning Settings on page 52

There is no trawl on Scala/Scala2, MaxSea or Olex

- → Trawl settings may be incorrect.
- Open the control panels and check from Scala Ownship and Trawl Data > Trawl / Scala2
 Single Trawl or Twin Trawl that you see data in Doors Positioning.

nship and Trawl Data		Single Trawl	
	×	Trawl Modeling	
awl Doors Positioning	~	Manual Estimation	
	58.5 m 😑 🗌	Doors Positioning	
Port Door Bearing (T)	74.4° 🔵 👘	Doors Spread	128.9 m 🔻
rt Door Horizontal Distance	186.6 m 🌑	Port Door Slant Distance	797.1 m 🌒
bd Door Bearing (T) bd Door Horizontal Distance	56.3° 🛀 184.3 m 🍨	Port Door Horizontal Distance	784.6 m 🎱
d Door		Port Door Bearing (T)	210.5° 🕚
		Stbd Door Slant Distance	802.3 m 🍮
		Stbd Door Horizontal Distance	789.1 m 🎱
		Stbd Door Bearing (T)	201.1° 🔍

- **2.** Click **Menu ≡** > **Settings** > **Trawl**.
- **3.** Check that **Headline (H)**, **Bridle (B)** and **Sweepline (S)** dimensions are completed according to your trawl model.

There is no trawl or vessel

- → You may have no GPS coordinates or heading data.
- 1. Scala Open the control panels and click **Sensors Data** > **NMEA**. Check that you receive GPS coordinates and heading data.

OPS on UDP 10110	*
Position	64°38'911 N 012°21'141 W
Heading (True)	222.1° 🕙
COG	230.2° 🔵
SOG	4.8 kn 单

2. Scala2 Open the control panels, then go to **NMEA Inputs** and check that you receive GPS coordinates and heading data.

	NMEA Inputs
*	UDP 10110
	GPS
301 N 794 W	Position
4.0 kn 🌒	SOG
29.0° 🌑	COG
37.6° 🔍	Heading (True)
4.0 kn ● 29.0° ●	GPS Position SOG COG

3. If not, check you have correctly configured the NMEA input(s): Adding Data from External Devices on page 56.

The trawl seems shrunken

- → Bearing angles may be incorrect.
- **1. Scala** Check if the issue comes from the bearing angles:

- 1. Open the control panels and go to **Data Processing** > **Trawl Modeling**.
- 2. Change Doors Positioning System settings. For example select Uses warp lengths and door spreadinstead of Uses warp lengths and bearings.
- **3.** On the chart view, if the size of the trawl decreases or increases it means that the bearing measurements are not correct.
- **2.** Check the baseline dimensions you entered in the positioning settings in the system web page (or Scala/Scala2 receiver page).

Scala The vessel moves backwards and there is no trawl

- → **Dead Reckoning** option may be active.
- 1. Scala 01.06.14 From Scala version 01.06.14 and later, check from the bottom of the window if you see a **DR** warning. It means that **Dead Reckoning** option is active. If yes, follow the next steps.

- 2. Click Menu ≡ > Expert Mode .
- **3.** From the Control Panels, click **Data Estimation** > **Ownship**.
- **4.** Check that none of the options are selected. If so, deselect them.

Data Estimation	
Ownship	
Dead Reckoning	
Roll	+0.0°
Pitch	+0.0°

The vessel and trawl have erratic movements: they jump, zigzag, move forward and backward

- \rightarrow You have two GPS inputs. Coordinates can be slightly different between the two GPS so the position of the trawl changes according to one or the other.
- 2. Scala2 Open the control panels and check if you receive coordinates from two GPS in **NMEA Inputs**. If so, remove one of the devices.

Positioning on SeapiX: Port/starboard trawl doors are reversed

- → Scala Your version of Scala does not output the correct positioning sentence or you selected a wrong positioning sentence.
- 1. Upgrade Scala to version 01.06.19 or later.
- When configuring the output of positioning data in Scala, from Settings > Add NMEA Output > Emit trawl positioning sentence, select Best sentence for Seapix (\$PTSAL).
- → Scala2 NMEA output sentence may be wrong.
- **1.** Go to **Settings** > **NMEA Outputs**.

- **2.** Click the edit icon in front of the corresponding NMEA output.
- **3.** Click **Data to Emit** tab, then check that **Emit trawl positioning sentence** is set to **Best sentence for Seapix (\$PTSAL)**.

Spread Sensors: In Scala/Scala2, Lost is displayed instead of spread distance

It is written **Lost** instead of spread distance data.

Distance to Stbd Lost 🕚

- → Trawl doors may not be aligned or may lay on their side.
- **1.** Check the pitch and roll.
- **2.** If needed, pull the warps to align the doors or set them back upright.

→ Master and Starboard sensors have been inverted on the doors. In that case, you will also have wrong pitch and roll values.

• Open the pocket and check the top of the housing of the sensor: the one with a green marker must be on the starboard side and the one with a red marker on the port side. If there is no marker on the top, remove the sensor and check on the side if there is a marker. The side of the transducer with a circle must be oriented towards the outside.

→ If you used to have correct data and suddenly lost them, the up or down component in the transducer may be broken.

- **1.** Remove sensors from the doors and check from the office if **Lost** is still displayed.
- **2.** If yes, see with support service for repair.

→ Distance between trawl doors is more than 255 m (signal is lost at 256 m, ±1 m) and the sensor telegram does not cover such a distance.

• Change the sensor telegrams to AL6 or A6: see Configuring Spread Sensor Telegrams on page 31.

Spread Sensor: Distances are incorrect or irregular

Spread distances displayed in Scala/Scala2 do not correspond to the reality or distance values are very irregular.

- → The threshold of the sensor detection level is too low.
- **1.** Connect the sensor to Mosa2.
- **2.** From Mosa2, click **Menu =** > **Expert** and enter the password copernic.
- 3. Click the tab Spread and from Threshold Detection Level, add 10 to the current level.
- **4.** Test the sensor when installed on the doors during trawling, and if needed, add 12 again (this corresponds to 6 dB).
- → There is a conflict between frequencies.
- Make sure there is a minimum distance of 100 Hz between all the telegram frequencies.

→ The spread telegrams you entered in Mosa2 and those you entered in the receiver settings (Scala/Scala2 receiver page or system web page) are not the same.

• Compare the telegrams you configured on Mosa2 and those you entered in the receiver settings. Change if necessary.

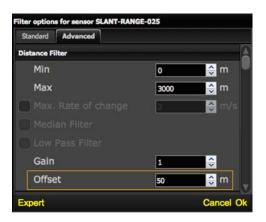
M		M
Information Spread Depth Temperature Pitch and Roll Channel Chirp	General Configuration	SPREAD-MASTER-023 - 170003
8		Sensor Name
Trawl Geometry	*	Sensor Name: SIREAD-MASTER-023
Configure for Scanmar slave	*	Sensor Product: SPREAD_MASTER
Clump Boat Code/Channel Code	*	Remove
Clump Telegram	¥	
Starboard Boat Code/Channel Code	*	Sensor Options
Starboard Telegram		Sensor Processing Detection: Detection and 2D Sensitivity: Medum
Starboard Telegram Telegram AN	•	STARBOARD
Reset Apply		Frequency (Hz): C3046-4649 Hz-FID-22 Telegram: AN Filter: Configure

→ If the spread distances are very small such as 1 meter or less, the Master and Starboard sensors have been inverted on the doors. In that case, you will also have wrong pitch and roll values.

 Open the pockets and check the top of the housing of the sensor: the one with a green marker must be on the starboard side and the one with a red marker on the port side. If there is no marker on the top, remove the sensor and check on the side if there is a marker. The side of the sensor with a circle (1) must be oriented towards the outside.

Slant Range: Slant distance is too long

The slant distance displayed in Scala/Scala2 is longer than the distance indicated by the winch control system.


→ Slant distance is calculated from the distance between the sensor and the receiving hydrophone. If the hydrophone is placed further away from the stern than the winch control system, it will display a longer distance. You need to apply an offset to the slant distance.

- **1.** From Scala/Scala2, click **Menu** ≡ > **Expert Mode** and enter the password copernic.
- 2. Scala Click menu again, then Receivers.
- **3.** Scala2 Right-click the IP address of the receiver at the bottom of the page, then click **Configure Receiver**.
- **4.** From the left side of the screen, click the name of your sensor.
- 5. From Sensor Options > Slant Range > Filter, click Configure.

Sensor Processing	N/R
Allowance:	1
Detection:	Synchro 1
Slant Range	
Uplink Frequency (Hz):	33000
	50000
Ping Frequency (Hz):	50000

6. From **Distance Filter**, apply an offset corresponding to the difference between what displays the winch control system and the Slant Range sensor.

Support Contact

You can contact your local dealer if you need maintenance on your Marport products. You can also ask us at the following contact details:

FRANCE

Marport France SAS 8, rue Maurice Le Léon 56100 Lorient, France supportfrance@marport.com

NORWAY

Marport Norge A/S Breivika Industrivei 69 6018 Ålesund, Norway supportnorge@marport.com

SPAIN

Marport Spain SRL Camino Chouzo 1 36208 Vigo (Pontevedra), Spain supportspain@marport.com

USA

Marport Americas Inc. 12123 Harbour Reach Drive, Suite 100 Mukilteo, WA 98275, USA supportusa@marport.com

ICELAND

Marport EHF Tónahvarf 7 203 Kopavogur, Iceland supporticeland@marport.com

SOUTH AFRICA

Marport South Africa Cape Town, Western Cape 11 Paarden Eiland Road Paarden Eiland, 7405 csanter@marport.com

UNITED KINGDOM

Marport UK ltd 32 Wilson Street Peterhead, AB42 1UD, United Kingdom gyoungson@marport.com

Appendix

Frequency Plan

It is important to carefully plan the setup of your sensors before adding them to the system. You can create a table with a list of frequencies and complete it when you add sensors.

Boat & Channel Codes

This list shows the standard frequencies for PRP telegrams. When you configure boat codes, make sure to respect the correct interval between frequencies (see table above).

Codes			
BC/CH	Frequency	FID (Scanmar)	
C-1/CH1	42833	45	
C-1/CH2	41548	32	
C-1/CH3	41852	35	
C-1/CH4	40810	25	
C-1/CH5	42500	42	
С-1/СН6	43200	49	
C-2/CH1	42631	43	
C-2/CH2	41417	31	
C-2/CH3	41690	33	
C-2/CH4	40886	26	
C-2/CH5	42300	40	
С-2/СН6	43100	48	
C-3/CH1	42429	41	
C-3/CH2	41285	30	
C-3/CH3	41548	32	
С-3/СН4	40970	27	
C-3/CH5	42100	38	
С-3/СН6	43000	47	
C-4/CH1	42226	39	
C-4/CH2	41852	35	
C-4/CH3	41417	31	
С-4/СН4	41160	29	

C-4/CH5	42700	44
C-4/CH6	43300	50
C-5/CH1	42024	37
C-5/CH2	41690	33
C-5/CH3	41285	30
C-5/CH4	41060	28
C-5/CH5	42900	46
С-5/СН6	43400	51
C-6/CH1	39062	3
C-6/CH2	39375	7
C-6/CH3	39688	11
C-6/CH4	40000	15
C-6/CH5	40312	19
С-6/СН6	40625	23
C-7/CH1	38906	1
C-7/CH2	39219	5
С-7/СН3	39531	9
С-7/СН4	39844	13
C-7/CH5	40156	17
С-7/СН6	40469	21

Frequencies and intervals

The diagrams below show the bandwidth of the different types of Marport sensors and intervals you must respect when adding other sensors.

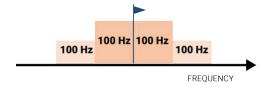


Figure 12: PRP sensors (e.g. Catch sensor, Trawl Speed, Spread sensor...)

Example: If the frequency of the sensor is 40kHz, there should be no sensors between 39.9–40kHz and 40–40.1kHz.

Figure 13: Marport Pro sensors (e.g. Trident, Door Explorer)

Example: If the frequency of the sensor is 40kHz, there should be no sensors between 39.8–40kHz and 40–50.2kHz.

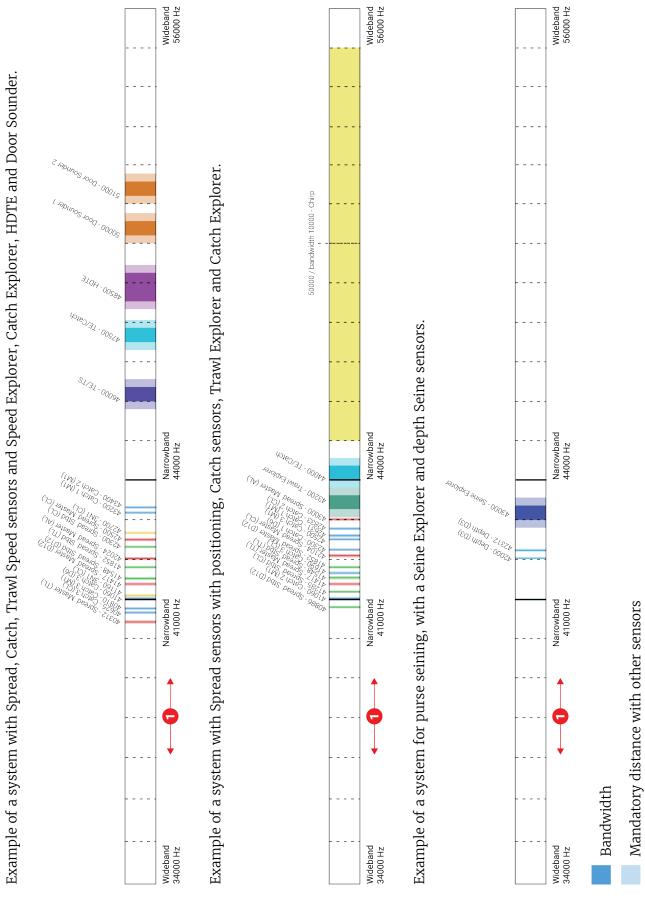
Figure 14: NBTE sensors (e.g. Speed Explorer, Trawl Explorer, Catch Explorer, Door Sounder)

Example: If the frequency of the sensor is 40kHz, there should be no sensors between 39.8–40kHz and 40–40.6kHz.

Figure 15: HDTE narrow band mode

Example: If the frequency of the sensor is 40kHz, there should be no sensors between 39.8–40kHz and 40–41kHz.

Figure 16: HDTE wide band mode


Example: If the frequency of the sensor is 40kHz, there should be no sensors between 39.8–40kHz and 40–42.6kHz.

Recommended distance with other sensors

Examples of frequency allocations

- We recommend to allocate frequencies between 34 and 56 kHz for wideband hydrophones and between 41 kHz and 44 kHz for narrowband hydrophones.
- Echosounders are usually placed around 38 kHz, make sure to allow enough distance with them.

1 Avoid allocating frequencies between 37 and 39 kHz because this range is generally used by echosounders.

TSO22

| 137

Appendix B: Compatible NMEA Sentences from Winch Control Systems, GPS and Compass Devices

You can add to Scala/Scala2 measures coming from winch control systems that use the following NMEA sentences.

NMEA 0183 Standard Sentences

Symbol (*) indicates which parts of the sentence Scala/Scala2 uses.

NMEA Sentence	Format	First compliant version of Scala
GGA - Global Positioning System Fix Data	 \$GGA, hhmmss.ss, aaaa.aa, b, cccc.cc, d, e, ff, g.g, h.h, M, i.i, M, j. j, kkkk*hh<cr><lf></lf></cr> 1. \$: Talker identifier* 2. GGA: Sentence formatter* 3. hhmmss.ss: UTC of position* 4. aaaaa.aa, b: Latitude North/South (N/S)* 5. cccc.cc, d: Longitude East/West (E/W)* 6. e: GPS quality indicator 7. ff: Number of satellites in use (00-12) 8. g.g: Horizontal dilution of precision 9. h.h, M: Antenna altitude above/below mean sea level (geoid), meters* 10.i.i, M: Geoidal separation, meters 11. j.j: Age of differential GPS data 12.kkkk: Differential reference station ID 13. *hh: Checksum* 	1.0.0.0
GLL - Geographic Position - Latt/Long	 \$GLL, aaaa.aa,L,bbbbb.bb,L,hhmmss.ss,C,d*hh<cr><lf></lf></cr> 1. \$: Talker identifier* 2. GLL: Sentence formatter* 3. aaaa.aa,L: Latitude North/South (N/S)* 4. bbbbb.bb,L: Longitude East/West (E/W)* 5. hhmmss.ss: UTC of position* 6. C: status (A= data valid / V: data not valid)* 7. d: Mode indicator 8. *hh: Checksum* 	1.2.6.0

NMEA Sentence	Format	First compliant version of Scala
GNS - GNSS Fix Data	 \$GNS, hhmmss.ss, aaa.aa, L, bbbbb.bb, L, cc, dd, e.e, f.f,g.g, h.h, i.i, a*hh<cr><lf></lf></cr> 1. \$: Talker identifier* 2. GNS: Sentence formatter* 3. hhmmss.ss: UTC of position* 4. aaaa.aa,L: Latitude North/South (N/S)* 5. bbbbb.bb,L: Longitude East/West (E/W)* 6. cc: Mode indicator 7. dd: Total number of satellites in use (00-99) 8. e.e: Horizontal dilution of precision 9. f.f: Antenna altitude above/below mean sea level (geoid), in meters* 10.g.g: Geoidal separation, meters 11. h.h: Age of differential data 12.i.i: Differential reference station ID 13.*hh: Checksum* 	1.0.0.0
HDG - Heading, Deviation & Variation	 \$HDG,a.a,b.b,M,c.c,M*hh<cr><lf></lf></cr> 1. \$: Talker identifier* 2. HDG: Sentence formatter* 3. a.a: Sensor magnetic heading (degrees)* 4. b.b,M: Magnetic deviation (degrees), Easterly/Westerly (E/W)* 5. c.c,M: Magnetic variation (degrees), Easterly/Westerly (E/W)* 6. *hh: Checksum* 	1.0.0.0
HDT - Heading, True	 \$HDT, a.a, T*hh<cr><lf></lf></cr> 1. \$: Talker identifier* 2. HDT: Sentence formatter* 3. a.a,T: Heading (degrees) True* 4. *hh: Checksum* 	1.0.0.0

NMEA Sentence	Format	First compliant version of Scala
RMC - Recommended Minimum Navigation Information	 \$RMC, aaaaaa, A, bbbb.bbb, B, ccccc.ccc, C, ddd.d, eee.e, fffffff, ggg.g, G, H*hh<cr><lf></lf></cr> 1. \$: Talker identifier* 2. RMC: sentence formatter* 3. aaaaaa: Time (UTC)* 4. A: Status, A = data valid, V = navigation receiver warning* 5. bbbb.bbb, B: Latitude, N/S* 6. ccccc.ccc, C: Longitude, E/W* 7. ddd.d: Speed over ground (knots)* 8. eee.e: Course Over Ground (degrees True)* 9. ffffff: Date: ddmmyy* 10.ggg.g, G: Magnetic variation (degrees E/W)* 11. H: mode indicator: A=Autonomous, D=Differential, E=Estimated, M=Manual input, S=Simulator, N=data not valid (sentence is not accepted if mode indicator = N)* 12.*hh: Checksum* 	2.2.2.0
VHW - Water Speed and Heading	 \$VHW, a.a, T, b.b, M, c.c, N, d.d, K*hh<cr><lf></lf></cr> 1. \$: Talker identifier* 2. VHW: Sentence formatter* 3. a.a, T: Heading, degrees True* 4. b.b, M: Heading, degrees Magnetic* 5. c.c, N: Speed, knots* 6. d.d, K: Speed, km/hr 7. *hh: Checksum* 	1.4.0.0
VTG - Course Over Ground and Ground Speed	 \$VTG, a.a, T, b.b, M, c.c, N, d.d, K*hh<cr><lf></lf></cr> 1. \$: Talker identifier* 2. VTG: Sentence formatter* 3. a.a, T: Course over ground, degrees, True* 4. b.b, M: Course over ground, degrees, Magnetic 5. c.c, N: Speed over ground, knots* 6. d.d, K: Speed over ground, km/hr* 7. *hh: Checksum* 	1.3.3.0

Proprietary Sentences

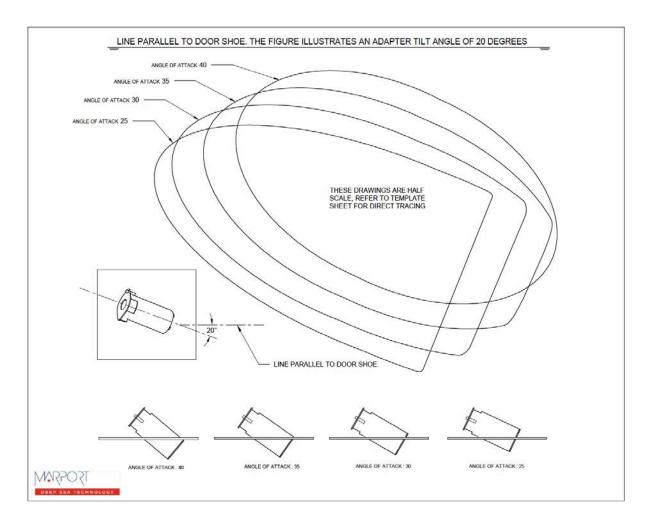
Symbol (*) indicates which parts of the sentence Scala/Scala2 uses.

Sentence	Format	First compliant version of Scala/Scala2
ATW - Naust Marine winch control system	<pre>\$NMATW,aaaaaa,bbbbbb,cccccc,dddddd,eeeeee,ffffff, ggggg,hhhhh,iiiii,jjjjj,kkkkk,lllll,mm:mm*hh <cr><lf> \$NMATW: Talker identifier + sentence formatter* a. Winch starboard tension (kg)* b. Winch port tension (kg)* c. Winch middle tension (kg)* d. Winch starboard length (meter or feet)* e. Winch port length (meter or feet)* f. Winch middle length (meter or feet)* g. RPM starboard h. RPM port i. RPM middle j. Line speed starboard (meter or feet/min) k. Line speed port (meter or feet/min) l. Line speed middle (meter or feet/min) m. Towing time (meter or feet/min)</lf></cr></pre>	1.2.0.0
FEC - Furuno attitude message	 \$PFEC, GPatt, aaa.a, bb.b, cc.c, *hh<cr><lf></lf></cr> \$PFEC: Talker identifier + sentence formatter* GPatt: Global positioning attitude, sentence formatter aaa.a: Heading true* bb.b: Pitch* cc.c: Roll* *hh: Checksum* 	1.0.5.0
KW - Karmoy Winch	 \$KWIN, a, b.b, T, c.c, M, d.d, rpm*hh<cr><lf></lf></cr> \$KWIN: Talker identifier + sentence formatter* a: Winch 0 = Stbd / Trawl 1 = Port Trawl Winch b.b, T: Tensions (tons) c.c, M: Length (meters) d.d, rpm: Speed (rpm) 	1.6.25.0

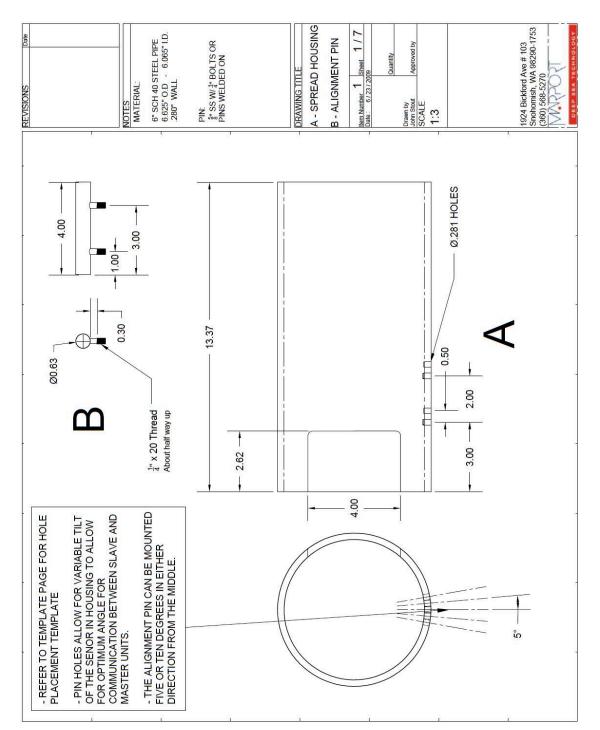
Sentence	Format	First compliant version of Scala/Scala2
MA DD - Marelec winch length and tension	 # MA DD dd/mm/yy hh:mm:ss LB aaaam LS bbbbm LM ccccm TB ddddK TS eeeeK TM ffffK gg<cr><lf></lf></cr> 1. # MA DD: talker identifier* 2. dd/mm/yy: date 3. hh:mm:ss: time 4. LB aaaam: Shooted length portside in meters* 5. LS bbbbm: Shooted length starboard in meters* 6. LM ccccm: Shooted length center in meters* 7. TB ddddK: Tension of portside in kg* 8. TS eeeeK: Tension of starboard in kg* 9. TM ffffK: Tension of center in kg* 10.gg: system in 00 = MANUAL (stop), 10 = auto shooting, 20 = auto fishing, 30 = auto hauling, 40 = slow tension alarm without propeller reduction, 51 = fast tension alarm with propeller reduction 	1.2.0.0
MPT TXOR - Marport, transducer orientation	 \$PMPT,TXOR,aa.a,bb.b,cc.c,d*hh \$PMPT: talker identifier + sentence formatter. TXOR: Transducer Orientation aa.a: pitch* bb.b: roll* cc.c: yaw* s: V = valid / N = not valid* 	2.0.0.0
NAV - Ifremer proprietary sentence	<pre>\$NANAV,04/09/ yy,hhmmss.sss,NASYC,N,48,22.92315,W,004,28.90527, D,00.0,WG84,04/09/13, 13:05:37.000, COU,346.08,-00.22,+00.13,+00.00,+00052.172,000,0000</pre>	1.0.0.0
IFM – Ifremer versatile sentence	 \$PIFM, EU, MES, dd/mm/yy, hh:hh:ss.sss, TRFUN, ±a, bb, ccccc, dddd, e.e, f, ggggg, hhhh, i.i, j, <cr><lf></lf></cr> \$PIFM: Talker identifier + sentence formatter* OCGYR: pitch, roll, heading TRFUN: winch lengths (starboard, port) and winch tensions (starboard, port) 	1.0.0.0

Sentence	Format	First compliant version of Scala/Scala2
L t 4 1. 2 3 4 5 6 7 8 9 10 8 9 10 10 10 11 12 12 14 14 14 15 16 14 14 14 14 14 14 14 14 14 14 14 14 14	<pre>\$WMSYN,aaa.a,m,bbb.b,m,ccc.c,m,ddd.d,m,ee.e,t,ff.f, t,gg.g,t,hh.h,t,0.5,r,0.7,r,1.6,s,2.0,s,0,0,1,0,0, 45.5,c,33.0,p,32.8,p*31 1. \$WMSYN: Talker identifier + sentence formatter* 2. aaa.a: winch starboard length in meters* 3. bbb.b: winch inner starboard length in meters* 4. ccc.c: winch inner port length in meters* 5. ddd.d: winch port length in meters* 6. ee.e: winch starboard tension in tons* 7. ff.f: winch inner starboard tension in tons* 8. gg.g: winch inner port tension in tons* 9. hh.h: winch port tension in tons* 10.Other strings are not used.</pre>	1.0.0.0
	<pre>\$WMSYN,aaa.a,c,bbb.b,c,ccc.c,c,dd.d,t,ee.e,t,ff.f, t*hh<cr><lf> 1. \$WMSYN: Talker identifier + sentence formatter* 2. aaa.a,l: Starboard wire length (m=meter)* 3. bbb.b,l: Mid wire length (m=meter)* 4. ccc.c,l: port wire length (m=meter)* 5. dd.d,t: Starboard wire tension, tons* 6. ee.e,t: Mid wire tension, tons* 7. ff.f,t: Port wire tension, tons*</lf></cr></pre>	1.6.19.0
TANAN	<pre>@TAWWL,a,M,b,M,c,M*hh<cr><lf> See below. M = meter</lf></cr></pre>	1.4.4.0
TAWWL - RappHydema, PTS Pentagon warp length	 @TAWWL,x,y,z*hh<cr><lf></lf></cr> 1. @TAWWL: Talker identifier + sentence formatter* 2. a: Starboard winch length* 3. b: Port winch length* 4. c: Middle winch length* 	1.6.19.0
TAWWT - RappHydema, PTS Pentagon warp tension	<pre>@TAWWT,a.a,T,b.b,T,c.c,T*hh<cr><lf> See below. T = tons</lf></cr></pre>	1.4.4.0
	 @TAWWT,a.a,b.b,c.c*hh<cr><lf></lf></cr> 1. @TAWWT: Talker identifier + sentence formatter* 2. a.a: Starboard winch tension* 3. b.b: Port winch tension* 4. c.c : Middle winch tension* 	1.6.19.0

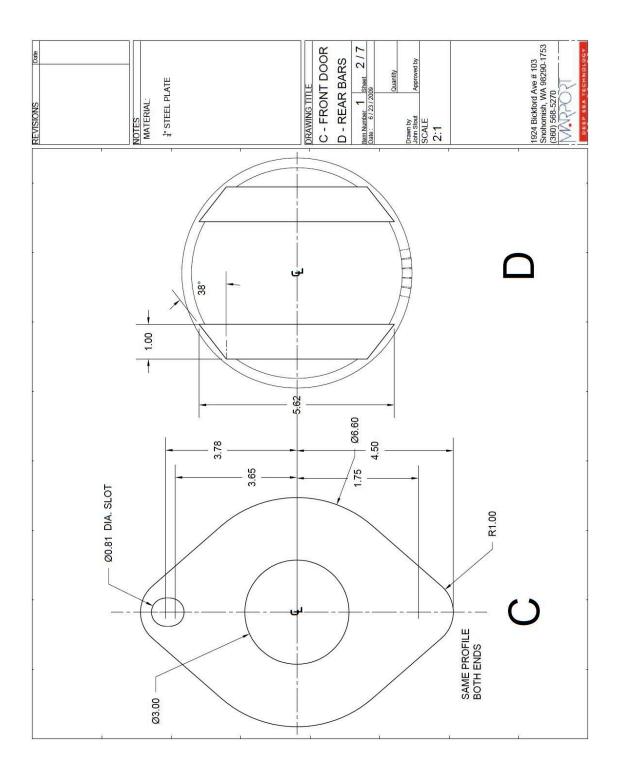
Sentence	Format	First compliant version of Scala/Scala2
WCT - Warp length and tension (Silecmar)	 \$SIWCT, aaa, bbb, ccc, d.d, e.e, f.f*hh<cr><lf></lf></cr> \$SIWCT: Talker identifier + sentence formatter* aaa: Port winch cable, meters* bbb: Starboard winch cable, meters* ccc: Clump winch cable, meters* d.d: Tension in the port winch, tons* e.e: Tension in the starboard winch, tons* f.f: Tension in the clump winch, tons* *hh: Checksum* 	1.2.6.0
WIDA1 - Kongsberg warp length	<pre>\$WIDA1,aa,bbbb,cc,0,dd,eeee,ff,1,g,h,i,2,k,1,m,3 *hh<cr><lf> 1. \$WIDA1: Talker identifier + sentence formatter* 2. aa: port wire tension, tons* 3. bbbb: port wire out, meters* 4. cc: port wirespeed, m/min* 5. 0: port* 6. dd: starboard wire tension, tons* 7. eeee: starboard wire out, meters* 8. ff: starboard wirespeed, m/min* 9. 1: starboard* 10.g: port mid wire tension, tons* 11. h: port mid wire speed, m/min* 13.2: port mid* 14.k: stb mid wire tension, tons* 15.l: stb mid wire out, meters* 16.m: stb mid wirespeed, m/min* 17.3: starboard mid* 18.*hh: Checksum*</lf></cr></pre>	2.2.2.0
WLP - Scantrol winch length (port)	 \$SCWLP, a.a, M, b.b, M*hh<cr><lf></lf></cr> \$SCWLP: Talker identifier + sentence formatter* a.a, M: paid out wire in meters* b.b, M: wirespeed in meters/sec., positive when paying out wire *hh: Checksum* 	1.0.6.0

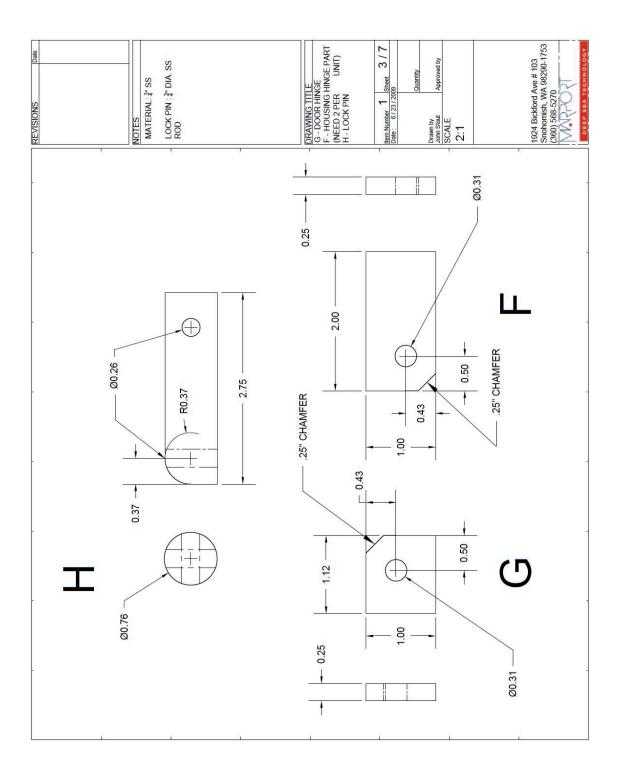

Sentence	Format	First compliant version of Scala/Scala2
WLS - Scantrol winch length (starboard)	 \$SCWLS, a.a, M, b.b, M*hh<cr><lf></lf></cr> 1. \$SCWLS: Talker identifier + sentence formatter* 2. a.a,M: paid out wire in meters* 3. b.b,M: wirespeed in meters/sec., positive when paying out wire 4. *hh: Checksum* 	1.0.6.0
WLC - Scantrol winch length (clump)	 \$SCWLC, a.a, M, b.b, M*hh<cr><lf></lf></cr> 1. \$SCWLC: Talker identifier + sentence formatter* 2. a.a, M: paid out wire in meters* 3. b.b, M: wirespeed in meters/sec., positive when paying out wire 4. *hh: Checksum* 	1.0.6.0
WLD - Scantrol winch length (triple trawl - port clump)	 \$SCWLD, a.a, T*hh<cr><lf></lf></cr> 1. \$SCWLD: Talker identifier + sentence formatter* 2. a.a,M: paid out wire in meters* 3. b.b,M: wirespeed in meters/sec., positive when paying out wire 4. *hh: Checksum* 	2.0.0.0
WLE - Scantrol winch length (quad trawl - center clump)	 \$SCWLE, a.a, T*hh<cr><lf></lf></cr> 1. \$SCWLE: Talker identifier + sentence formatter* 2. a.a,M: paid out wire in meters* 3. b.b,M: wirespeed in meters/sec., positive when paying out wire 4. *hh: Checksum* 	2.0.0.0
WTP - Scantrol winch tension (port)	 \$SCWTP,a.a,T*hh<cr><lf></lf></cr> 1. \$SCWTP: Talker identifier + sentence formatter* 2. a.a,T: tension in tons* 3. *hh: Checksum* 	1.0.6.0
WTS - Scantrol winch tension (starboard)	 \$SCWTS, a.a, T*hh<cr><lf></lf></cr> 1. \$SCWTS: Talker identifier + sentence formatter* 2. a.a,T: tension in tons* 3. *hh: Checksum* 	1.0.6.0
WTC - Scantrol winch tension (clump)	 \$SCWTC, a.a, T*hh<cr><lf></lf></cr> 1. \$SCWTC: Talker identifier + sentence formatter* 2. a.a,T: tension in tons* 3. *hh: Checksum* 	1.0.6.0

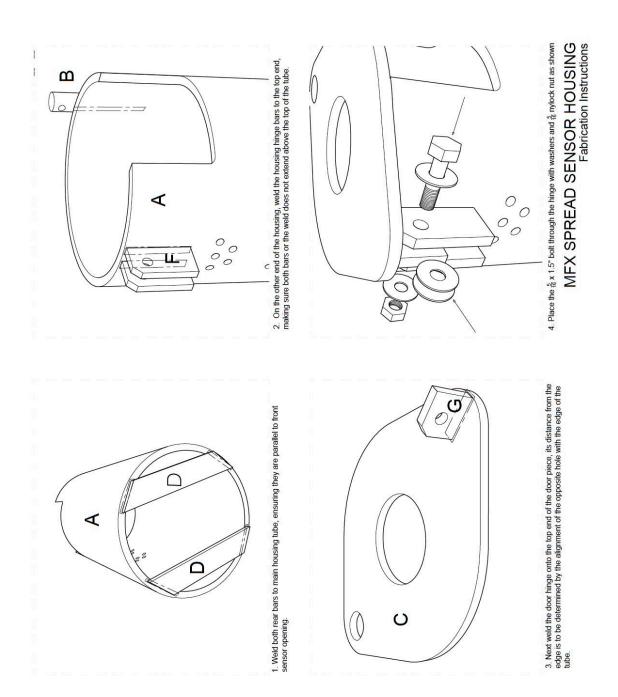
Sentence	Format	First compliant version of Scala/Scala2
WTD - Scantrol winch tension (triple trawl - port clump)	 \$SCWTD, a.a, T*hh<cr><lf></lf></cr> 1. \$SCWTD: Talker identifier + sentence formatter* 2. a.a,T: tension in tons* 3. *hh: Checksum* 	2.0.0.0
WTE - Scantrol winch tension (quad trawl - center clump)	 \$SCWTD, a.a, T*hh<cr><lf></lf></cr> 1. \$SCWTD: Talker identifier + sentence formatter* 2. a.a,T: tension in tons* 3. *hh: Checksum* 	2.0.0.0

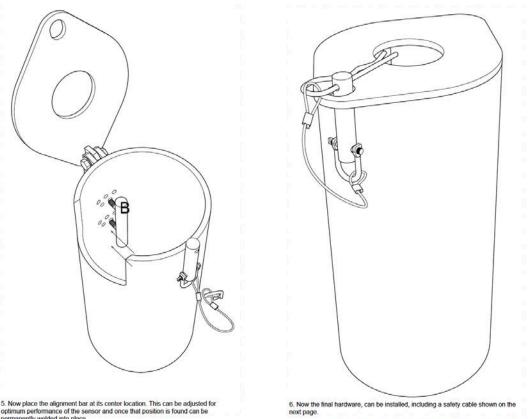

Appendix C: Pocket Drawings

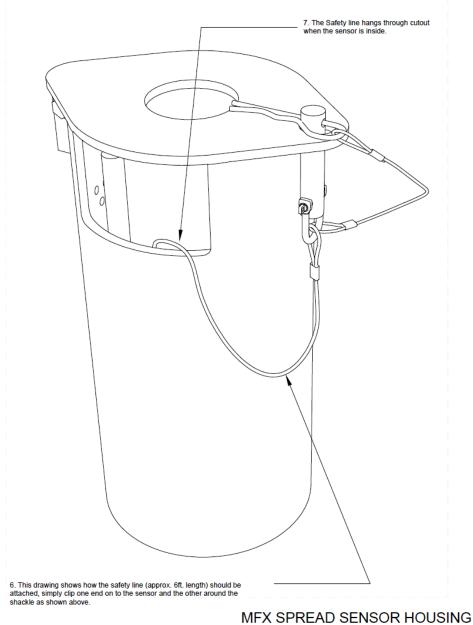
Drawings to manufacture Spread Sensor pockets to be placed on trawl doors. Ask your local Marport Office for scaled templates.


Pocket Angle of Attack

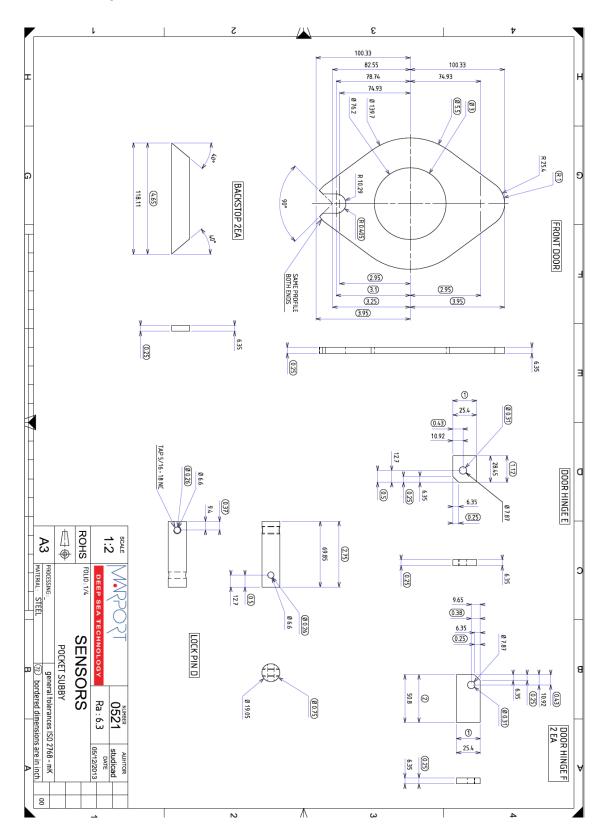


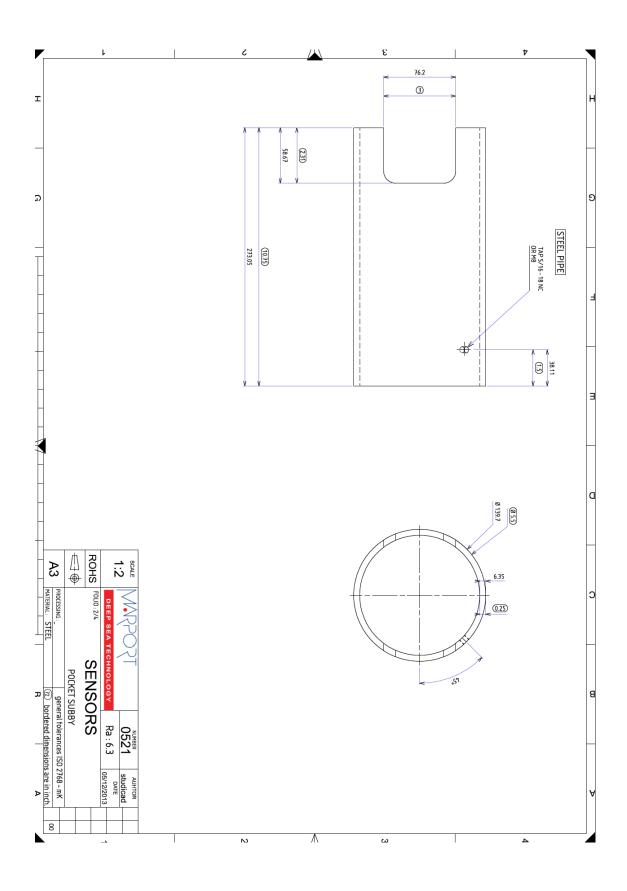

Pocket for XL Bottles (Standard Spread Sensor & Standard Slant Range)

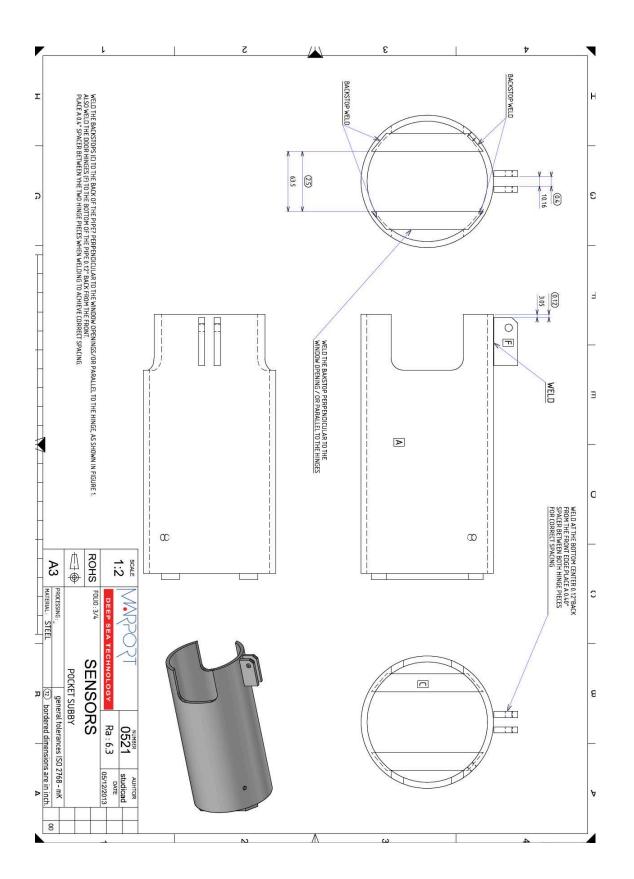


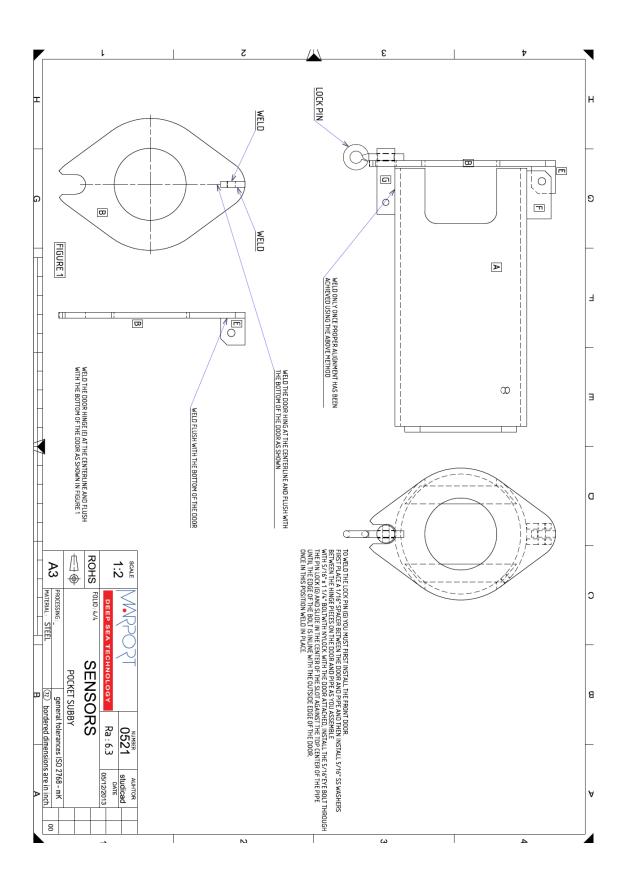

TSO22 | 151

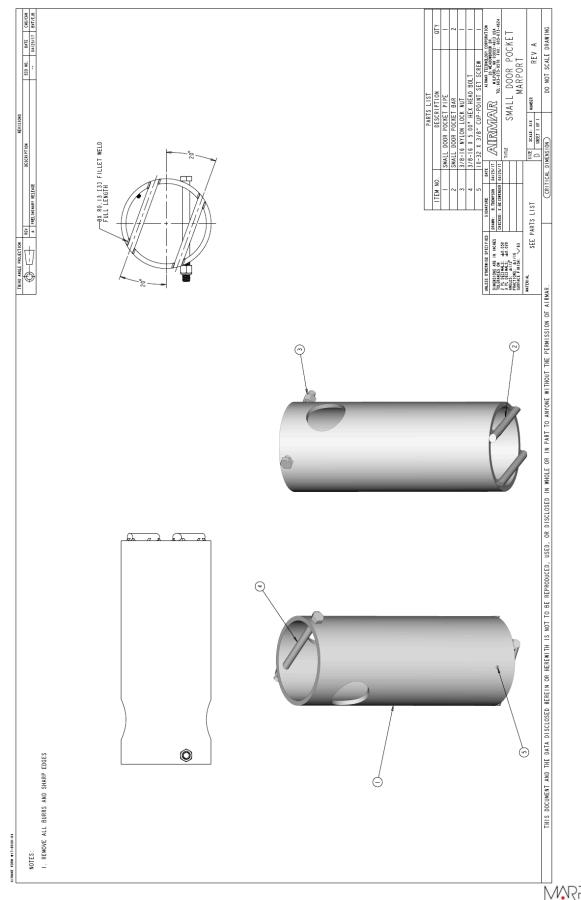
MFX SPREAD SENSOR HOUSING Fabrication Instructions

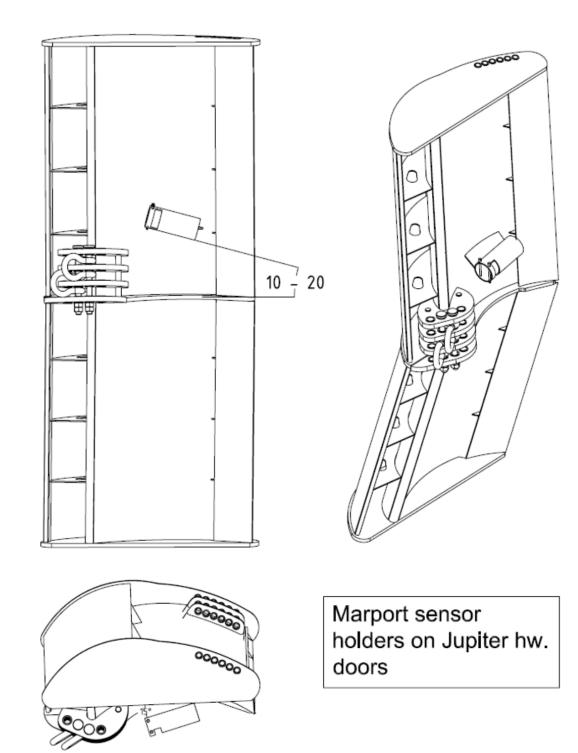

5. Now place the alignment bar at its center location. This can be adjusted for optimum performance of the sensor and once that position is found can be permanently welded into place.

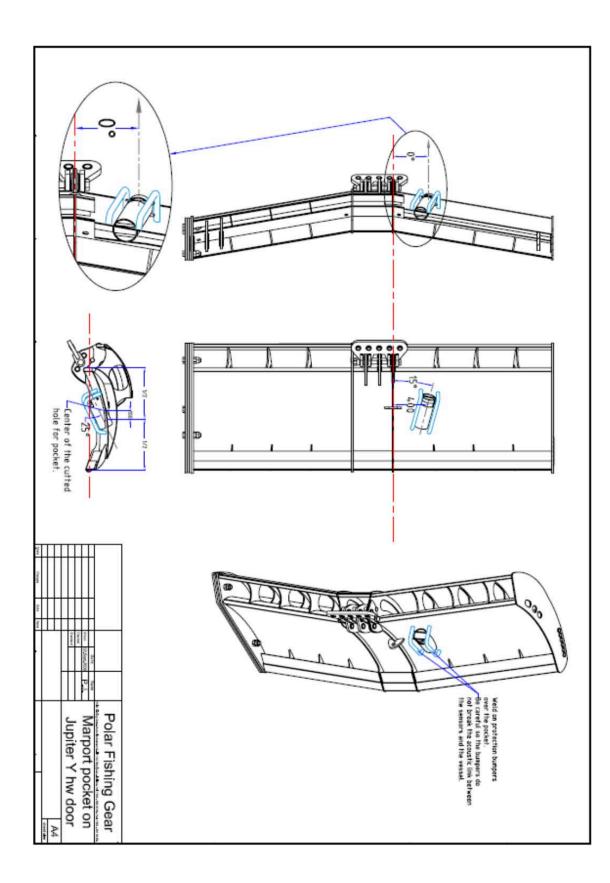



Fabrication Instructions

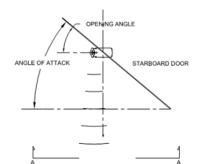



Pocket for Stubby Bottles

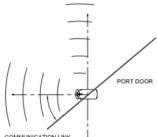


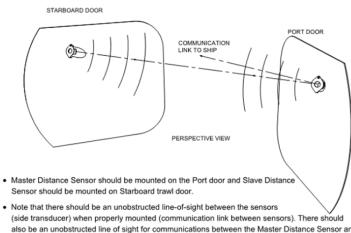


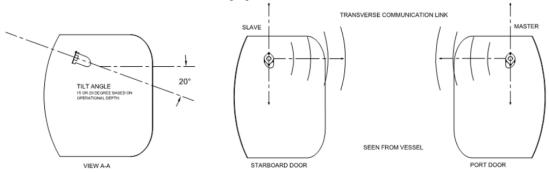
Pocket for Stubby Bottles with Slim Housing and Mini Slant Range



Appendix D: Example of Installation on Poly Jupiter Doors




Appendix E: General Installation Instructions and Drawings


DIRECTION OF TOW VIEW FROM ABOVE

COMMUNICATION LINK

- also be an unobstructed line of sight for communications between the Master Distance Sensor and the vessel's receiving hydrophone.For bottom trawling applications, the sensor adapter pocket should be mounted in the upper part of
- For bottom trawing applications, the sensor adapter pocket should be mounted in the upper part of the trawl door but in a place with the least influence in the center of gravity of the door. Consult door manufacturer for details.
- Tilt (elevation angle) should be adjusted in accordance to best performance based on operational depth and length of the trawl gear.
- The door pocket adaptor is designed to compensate for the angle of attack of the trawl door, under normal operational conditions and based on a standard recommendation of 35°.
- Refer to cut-out templates for higher or lower angles. Consult door manufacturer for optional mounting angles.

Appendix F: Testing Relative Bearing Measurements

You can test if the relative bearing measurements are correctly calculated by the door sensors.

Testing Bearing at the Office

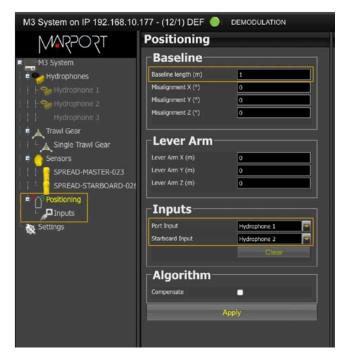
You can do a basic installation at the office to test the bearing measurements received from the door sensors.

Before you begin

For this task you need:

- An operational system
- Two large-band active or passive hydrophones
- One door sensor (master or slave) with positioning option

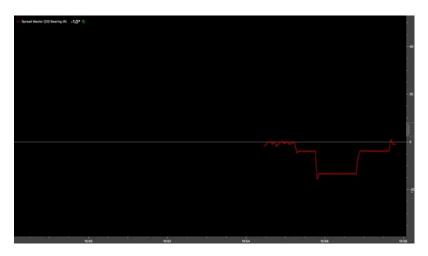
Procedure


- **1.** Open the system web page and click **Hydrophones**.
- **2.** Add the two hydrophones:
 - a) Select the location of each hydrophones.
 - b) Set **Rx/Tx** to **Receive**.

TS OSSIM		Н1	H2	НЗ	
Hydrophones Hydrophones Hydrophone 1 Hydrophone 2 Hydrophone 3 Hydrophone 3 Hydrophone 3	Front panel:			•	
	Hydrophones:	NC 1-68	NC-1-06	CLICK TO ADD	
	Туре:	Active	Active		
Single Trawl Gear	Bandwidth:	30;60 kHz	30;60 kHz		
Sensors	Beam Width Angle:	55 °	55 °		
Positioning	Beam Height Angle:	35 °			
Settings	Location:	Port - Front	Starboard - Front	M	1
	Horizontal Tilt Angle:	•			1
	Vertical Tilt Angle:	0			jî.
	Current status:	🗸 19.0 mA	🗸 19.0 mA		
	Rx/Tx:	Receive	Receive		1

3. Click Positioning.

- **4.** Set the positioning settings:
 - a) Enter a baseline of 1 meter and leave the other settings to 0.
 - b) In Inputs, enter the port and starboard hydrophones.


5. Place the two hydrophones side by side and a few meters in front of a door sensor. The sensor must be aligned with the hydrophones.

- **6.** From Scala/Scala2, check that the bearing measurements are $+/-1^{\circ}$.
- **7.** Move back the starboard hydrophone of approximately 5 cm. The bearing should be between -10° and - 15°.
- **8.** Move back the port hydrophone of approximately 5 cm.

The bearing should be between + 10° and + 15° .

Trouble: If the data is outside the recommended values, check the following points:

- The baseline must be set to 1 meter.
- The sensor must be aligned with the hydrophones.
- The positioning settings in the receiver must be the same as the sensor's settings set in Mosa2.

Testing Bearing at the Harbor

You can test the bearing measurements at the harbor to make sure the system is coherent, from the hydrophone connection to the hydrophone settings in Scala/Scala2.

Before you begin

The positioning system has been configured.

Procedure

- **1.** For each door sensor, tie a line to the front and a line to the back so that you can point them.
- **2.** Secure the lines to the stern with the Master sensor on port side and the Starboard sensor on starboard side.
- **3.** Place the sensors deeper than the vessel keel. The sides of the sensors with a circle/A must point toward each other and the uplink signal must point toward the hydrophones.
- **4.** On Scala/Scala2 bearing angles should be negative for the port sensor and positive for the starboard sensor.
- **5.** On Scala/Scala2 bearing angles should be above 180° for the port sensor and below 180° for the starboard sensor.

What to do next

Note: You can also test the bearing measurements while at sea: if the sensor in water is correctly aligned with the hydrophones, the bearing should be +/- 2°.

Index

A

Angle of attack 105

В

Baseline 13 Bathymetry 96 Displaying in Scala 99 Olex 99 Battery life 119 Bearing angles 13 Boat code 31, 133

С

Channel 35 Channel code 31, 133 Charger Maintenance Basic Sensor Charger 119 Dock 119 Medusa II Multi-charger 119 Plugging 119 Chirp, See Positioning Chirp option mode 34 Cleaning 121 Compatibility Mosa 7 Operating System 7 Config Read 43 **Configuration Cable** Connecting 27 Contact 132

D

Display Chart 61 Door 3D View 61 Incorrect chart view 126 Trawl spread plot 61 Twin trawl spread diagram 61 Vessel 3D view 61 Dock 119 Doors Positioning 61

Е

Echogram Noisy 125 Wrong 125 Elevation angle 105 Exporting configuration txt file 43 XML file 43

F

FFT Export 115 Frequency plan 133

G

GEBCO 96 GPS Adding 56 NMEA sentences 138

Η

Heading Adding 56 NMEA sentences 138 Hydrophones 45 For positioning system 13 Inputs 13

Ι

Indicators 25 Installing Slant Range 113 Spread Sensor 111 Interference Checking 116

L

LEDs 25 Lost distance 129

M

Maintenance Schedule 122 MaxSea Trawl positioning 81 Measures 42 Mosa2 Bad connection 123 Cannot connect wireless 123 Cannot start 123 Connecting to 27 Error message 123

Ν

Negative charge 23 NMEA inputs Adding 56 Compatibility 138 Noise Interference 115

0

Olex Bathymetry 99 Cabling 99 Display 99 Trawl positioning 76 Opening angle 105 Operational modes 25

P

Pitch and roll Calibration 36 Incorrect 129, 129 Offset 36 Opening Angle 36 Pocket Drawings 146 Elevation angle 147 Installation 108 Slant Range 148 Spread Sensor 148 Stubby bottle 155 Stubby bottle 155 Stubby bottle with Slim Housing 159 XL bottle 148 Positioning Calculations 54 For Slant Range 39 For Spread Sensor 34 Hydrophone configuration 45 System web page 52 Positioning system Components 13 Positive charge 23 Pressure sensor 23

R

Receiver Compatibility 47 Configuration file 47 Hydrophone configuration 45 Web page 47

S

SeapiX Trawl positioning 93 Slant distances 13 Slant Range Frequency 38 Pinger Delay for Response 38 Slave sensor type 30 Spectrum 114, 115, 116 Spread Frequency 31 Telegrams 31 Spread distances Incorrect 129 Lost 129 Small 129

Т

Technical specifications 20 Telegram 31 Temperature sensor 23 Tilt angle 105 TIMEZERO Trawl positioning 87 Transducer 23 Trawl geometry 30 Trawl modeling 59 Trawl settings 59

U

Uplink power <mark>41</mark>

W

Warp length Adding 56 NMEA sentences 138 Warp lengths 13 Receiving from Scantrol 103 Water ingress 12 Water switch 23